Cumulative Subject Index for 1997¹ Volumes 124–129

Absorption

artifact-free pure-phase PFG-enhanced double-quantum-filtered COSY spectra including gradient pulse in evolution period, Ancian *et al.*, **125**, 348

А

- lineshapes, in 2D ESR, and effects of slow motions in complex fluids, Saxena and Freed, **124**, 439
- pure absorption 2D TOCSY, ROESY, and NOESY spectra, quick recording using pulsed field gradients, Parella, Sánchez-Ferrando, and Virgili, **125**, 145

Acquisition

- parameters, selection for NMR experiment, graphical approach, Early, Donahue, and Williams, **125**, 163
- simultaneous, quadrupolar order and double-quantum ²³Na signals, Jung, Cannon, and Katz, **129**, 130
- whole echo, in 2D multiple quantum MAS NMR, Brown and Wimperis, **124**, 279
- Acquisition delay
- data, application of detection-estimation scheme for noisy NMR signals, Lin et al., **128**, 30
- Adiabatic decoupling
 - coherence sidebands in, elimination, Bendall and Skinner, 129, 30
 - reducing sidebands in, phase-cycling algorithm for, Skinner and Bendall, **124**, 474
- sidebands in, effect of sweep direction, Kupče, 129, 219
- Adiabatic demagnetization in rotating frame
- differential cross polarization spectroscopy of synthetic calcium phosphates and bone mineral, Ramanathan and Ackerman, **127**, 26 Adiabatic pulses
- compensation for spin-spin coupling effects during, Kupče and Freeman, **127**, 36
- refocusing, potential for unlimited bandwidths and excellent phase stability with, Hwang, van Zijl, and Garwood, **124**, 250
- selective, optimization, Rosenfeld, Panfil, and Zur, 126, 221
- selective inversion, design using adiabatic condition, Rosenfeld, Panfil, and Zur, **129**, 115
- Adiabatic slice-selective excitation for surface coils
- RF pulse designed for, Shen and Rothman, 124, 72
- ADRF (*see* Adiabatic demagnetization in rotating frame) Adsorption
- di-*tert*-butyl nitroxide on Au(111) and NiO(111), ESR and TPD studies, evidence for long-range interactions, Katter *et al.*, **126**, 242
- Advanced method for accurate robust and efficient spectral fitting
- quantification of MRS data with use of prior knowledge, Vanhamme, van den Boogaart, and Van Huffel, **129**, 35
- ¹⁰⁷Ag
 - pulsed ENDOR spectroscopy at large thermal spin polarizations, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199

¹⁰⁹Ag

pulsed ENDOR spectroscopy at large thermal spin polarizations, and

determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199

 ^{27}Al

- chemical shielding anisotropy, Vosegaard and Jakobsen, **128**, 135 corundum, quadrupole coupling constant, magnetic field dependence, Filsinger *et al.*, **125**, 280
- 2D multiple quantum MAS NMR
 - acquisition of whole echo, Brown and Wimperis, 124, 279
 - comparison of methods, Brown and Wimperis, 128, 42
- soft-pulsed quadrupolar central transition NMR studies of ovotransferrin, Aramini, Germann, and Vogel, **129**, 111
- Alanine
 - L-[1,3-¹³C₂,¹⁵N]alanine, orientational information from REDOR sidebands, Goetz and Schaefer, **129**, 222
 - and glycine, substitution for tryptophan, effects on heterogeneity of gramicidin A analogs in micelles, Hinton *et al.*, **124**, 132

Algorithms

- phase-cycling, for reducing sidebands in adiabatic decoupling, Skinner and Bendall, **124**, 474
- α -Al₂O₃
- ²⁷Al chemical shielding anisotropy, Vosegaard and Jakobsen, **128**, 135 Aluminum gallium arsenide
- -GaAs heterostructures, optically detected nuclear magnetic resonance in, lineshapes, Schreiner *et al.*, **124**, 80
- AMARES (see Advanced method for accurate robust and efficient spectral fitting)
- Amides
 - ¹⁷O chemical shifts, solvent effects: quantitative linear solvation shift relationships, Díez *et al.*, **124**, 8
 - proton chemical-shift anisotropy, determination in ¹⁵N-labeled proteins using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar crosscorrelation rates, Tessari *et al.*, **127**, 128
 - protons, and ¹⁵N, in deuterated proteins, triple-resonance 4D correlation, HN(CA)NH pulse scheme for, Ikegami *et al.*, **124**, 214
 - side-chain amide protons in proteins, stereospecific assignment with $\rm H_2NCO\text{-}E.COSY,$ Löhr and Rüterjans, 124, 255

Amplitude

- modulated decoupling pulses, in liquid-state NMR, Geen and Böhlen, 125, 376
- reductions caused by off-resonance effects with CPMG pulse sequence, affecting motional analysis of biomolecules, Ross, Czisch, and King, **124**, 355
- time-domain quantitation by wavelet-transform analysis, Serrai et al., 124, 20
- 4-Androsten-3,17-dione
 - proton chemical-shift spectrum, Simova, Sengstschmid, and Freeman, 124, 104
- Anisotropic interactions
 - under magic-angle spinning, multidimensional solid-state NMR for correlation of, Fujiwara, Shimomura, and Akutsu, **124**, 147
- Anisotropy
 - chemical shielding
 - ²⁷Al, Vosegaard and Jakobsen, **128**, 135
 - spin relaxation induced by, evaluation: importance of antisymmetric component, Kowalewski and Werbelow, **128**, 144

¹ Boldface numbers indicate volume; lightface numbers indicate pagination.

orientational, determination in glassy solids by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217

proton chemical-shift

- amide, determination in ¹⁵N-labeled proteins using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, Tessari *et al.*, **127**, 128
- effect on MAS spectra of hydrate crystals, Tekely, **127**, 238 Annealing
- mean-field simulated, protein heteronuclear NMR assignments using, Buchler et al., 125, 34

Antamanide

- dihedral-angle distribution based on three-bond coupling information: polypeptide-structure determination in presence of conformational equilibria, Schmidt, **124**, 310
- ${}^{3}J_{\rm HC}$ coupling constants, determination by 2D NMR multiplet simulation for analysis of conformational equilibria, Schmidt, **124**, 298

Antibiotic

peptide, degree of coupled isotopic enrichment of different positions in, NMR measurement, Miller, Egan, and Townsend, **125**, 120

Antisymmetry

and shielding anisotropy, effects on ¹⁵N spin relaxation, Kowalewski and Werbelow, **128**, 144

Artifacts

- convection, suppression in double-stimulated-echo diffusion experiments, Jerschow and Müller, **125**, 372
- negative edge enhancement in NMR imaging with diffusion at permeable susceptibility interfaces, Nestle, Rydyger, and Kimmich, **125**, 355
- pure absorption PFG-enhanced double-quantum-filtered COSY spectra free of, including gradient pulse in evolution period, Ancian *et al.*, **125**, 348

 AsO_4^{4-}

as spin probe in paraelectric phase of KH₂AsO₄, electron–nuclear dipolar relaxation, ESR study, Rakvin and Merunka, **126**, 87

Assignment

- backbone, ${}^{15}N(i+1)$, ${}^{13}C\alpha(i)$, and ${}^{1}H\alpha(i)$ backbone resonances in ${}^{13}C/$ ${}^{15}N$ -labeled proteins, correlation by (CO)N(CO)CAH experiment, Dijkstra *et al.*, **125**, 149
- carboxylate groups in uniformly ¹⁵N/¹³C-labeled proteins, 2D NMR experiments H(C)CO₂ and HCCO₂ for, Pellecchia *et al.*, **124**, 274
- ¹³C NMR spectra of rigid solids by 2D MAS separated-local-field spectroscopy, Pan, **124**, 1
- protein, heteronuclear NMR, method using mean-field simulated annealing, Buchler *et al.*, **125**, 34
- resonance of smaller ¹³C-labeled biomolecules, 2D *ct*-HC(C)H-COSY for, Szyperski, Fernández, and Wüthrich, **128**, 228
- stereospecific, side-chain amide protons in proteins with $H_2NCO-E.COSY$, Löhr and Rüterjans, **124**, 255

Atomic orbitals

- transition metals, hyperfine-coupling parameters for, Rieger, $\boldsymbol{124,}$ 140 Automation
 - analysis of MRS time-domain data, use of continuous regularization in, Totz *et al.*, **124**, 400
 - signal class recognition by Bayesian method, use of global symmetries in, Schulte *et al.*, **129**, 165

Averaging

- far-off-resonance, dipolar interactions in solids, Chang et al., 124, 165 4,4'-Azoxydianisole
- molecular motion in, ²H double-quantum NMR spectroscopy study, Duer and Stourton, **129**, 44

В

$^{10}\mathbf{B}$

sodium borocaptate, quadrupolar relaxation of spin 3 in intermediate $\omega_0 \tau_c$ regime, Baram and Bendel, **129**, 10

 ${}^{11}\mathbf{B}$

multiple-quantum MAS NMR spectra of quadrupolar nuclei, indirect spin-spin coupling in, Wu et al., 124, 237

Bandwidth

- working, approach for constructing time-symmetric adiabatic refocusing pulses with no appreciable phase distortion within, Hwang, van Zijl, and Garwood, **124**, 250
- Barium chlorate monohydrate
- crystals, MAS spectra, effect of proton chemical-shift anisotropy, Tekely, **127**, 238

Bases

types in ¹³C-uniformly labeled RNAs, identification of ribose-base sequential NOEs according to, Ramachandran *et al.*, **124**, 210

- Bayesian method
 - automated signal class recognition by, use of global symmetries in, Schulte *et al.*, **129**, 165

Beads

- polymeric resin, peptides on, 2D NMR spectroscopy, Jelinek et al., **125**, 185
- Benzene ring
 - inner, 1,4-diphenoxybenzene, time-reverse ODESSA experiment, Reichert et al., **125**, 245

Bilayers

oriented lipid

- cross-polarized peptide samples in, dipolar oscillations, Tian and Cross, **125**, 220
- preparation on ultrathin polymers for solid-state NMR analyses of peptide-membrane interactions, Augé *et al.*, **124**, 455

Biofluids

- multiple-¹³C-labeled, ultra-high-resolved HSQC spectra, Willker, Flögel, and Leibfritz, **125**, 216
- Biological macromolecules
- pulse sequences for, integration of optimized Water-PRESS pulse sequence, Price, Hayamizu, and Arata, **126**, 256
- **Biological** materials
 - solid-state NMR, phase-cycling schemes for multiple π -pulse sequences in, Igumenova, Mitchell, and Evans, **127**, 144

Biological systems

- phantoms simulating, measurement of ²³Na T_2 and content ratio by use of multiple-quantum filtering, Jung, Cannon, and Katz, **124**, 393
- Biomolecules
 - high-field NMR, ROESY with water flip back for, Fulton and Ni, **129**, 93
 - motional analysis, systematic errors associated with CPMG pulse sequence affecting, Ross, Czisch, and King, **124**, 355
 - smaller, ¹³C-labeled, 2D ct-HC(C)H-COSY for resonance assignments, Szyperski, Fernández, and Wüthrich, **128**, 228

Biphenyl

- deuterated, spin diffusion in single crystal, Müller, Zimmermann, and Haeberlen, **126**, 66
- BIRD
 - double-SLBIRD, 2D HSQC, application of use of RF gradients in excitation sculpting, Heikkinen, Rahkamaa, and Kilpeläinen, **127**, 80
 - and TANGO, RF gradient sequence to eliminate uncoupled magnetization, Sodickson and Cory, **125**, 340

Bisphenol-A polycarbonate

- doubly ¹³C-labeled, orientational anisotropy determination by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217
- Blood

foam preparation, NMR of laser-polarized ¹²⁹Xe, Tseng *et al.*, **126**, 79 Bond polarization theory

semi-empirical approach for calculation of ¹³C chemical-shift tensors based on, Sternberg and Prié, **125**, 8

232

Bone mineral

and synthetic calcium phosphates, ADRF differential cross polarization spectroscopy, Ramanathan and Ackerman, **127**, 26

Book reviews

- Bruch, Ed., "NMR Spectroscopy Techniques," 125, 229
- Canet, "Nuclear Magnetic Resonance, Concepts and Methods," **124**, 520
- Hoch and Stern, "NMR Data Processing," 124, 520
- Rao and Kemple, "NMR as a Structural Tool for Macromolecules. Current Status and Future Directions," **125**, 228
- Rusling and Kumosinski, "Nonlinear Computer Modeling of Chemical and Biochemical Data," **125**, 228
- Schmidt-Rohr and Wolfgang, "Multidimensional Solid-State NMR and Polymers," 125, 229
- Atta-ur-Rahman and Choudhary, "Solving Problems with NMR Spectroscopy," 125, 228
- Tycko, Ed., "Nuclear Magnetic Resonance Probes of Molecular Dynamics," **124**, 521

Brain

human, multislice imaging of T_1 at 4.1 T, application of general approach to error estimation and optimized experiment design, Mason, Chu, and Hetherington, **126**, 18

Breast tumors

human MCF7, dynamic contrast-enhanced imaging and analysis at high spatial resolution, Furman-Haran, Grobgeld, and Degani, **128**, 161 Broadening

Broadening

- *g*-strain, and exchange effects, relationship to resolution in high-field EPR spectroscopy of undiluted Cr(V) salts, $S = \frac{1}{2}$, Cage *et al.*, **124**, 495 Brownian dynamics
- computer simulations, in study of influence of nonconstant magneticfield gradient on PFG NMR diffusion experiments, Håkansson *et al.*, **124**, 343

Brushite

ADRF differential cross polarization spectroscopy, Ramanathan and Ackerman, **127**, 26

Build-up curves

and decay curves, estimating cross-relaxation rates from simultaneous fits to, robust method, Najfeld *et al.*, **124**, 372

Bulk magnetic susceptibility

in resolution of internal and external signals in NMR spectra of plant tissues, Shachar-Hill *et al.*, **127**, 17

"Bu₃SnF

С

 ^{13}C

- accelerated relaxation of sensitive nucleus for enhancement of signal-tonoise with time, Homer, Perry, and Palfreyman, **125**, 20
- antamanide, ${}^{3}J_{HC}$ coupling constant determination by 2D NMR multiplet simulation for analysis of conformational equilibria, Schmidt, **124**, 298

broadband polarization transfer under MAS, application to total throughspace-correlation NMR spectroscopy, Baldus and Meier, **128**, 172

- brucine, adiabatic decoupling, effect of sweep direction on sidebands in, Kupče, **129**, 219
- chemical-shift tensors, semi-empirical approach for calculation, Sternberg and Prié, **125**, 8
- ¹³CH₃I, elimination of coherence sidebands in adiabatic decoupling, Bendall and Skinner, **129**, 30
- ¹³C-{¹H} spectra of 2,2'-difluorobiphenyl in isotropic and liquid crystalline phases: general features of X part of ABX spin system, Edgar, Emsley, and Furby, **128**, 105
- compensation for spin-spin coupling effects during adiabatic pulses, Kupče and Freeman, **127**, 36

- constant-time HQQC experiment for protein NMR spectroscopy, Shaw et al., 124, 479
- CPMAS measurements under high gas pressures, Miyoshi, Takegoshi, and Terao, **125**, 383
- 2D HSQC, application of use of RF gradients in excitation sculpting, Heikkinen, Rahkamaa, and Kilpeläinen, 127, 80
- doubly labeled bisphenol-A polycarbonate, orientational anisotropy determination by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217
- enriched proteins, field dependence of *J* modulation in 2D NMR spectra on, measurement of dipolar contributions to ${}^{1}J_{CH}$ splittings from, Tjandra and Bax, **124**, 512
- EPR hyperfine interaction in complex [Rh(CN)₆]⁴⁻ in KCl host lattice, Vugman, Giannoni, and Coelho Neto, **124**, 352
- D-[1-¹³C,1-²H]glucose complexed to *E. coli* periplasmic glucose/galactose receptor, dynamic frequency shifts, Gabel *et al.*, **128**, 101
- -¹H dipolar interactions, amplification in 2D MAS NMR, and application to torsion angle determination in peptides, Hong *et al.*, **129**, 85
- high-field high-speed CP-MAS heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee–Goldberg homonuclear decoupling, van Rossum, Förster, and de Groot, **124**, 516
- interatomic distance determination by zero-quantum correlation spectroscopy under conditions of rotational resonance, Koons *et al.*, **124**, 499
- labeled proteins in H₂O, doubly sensitivity-enhanced 3D HCCH-TOCSY using heteronuclear cross polarization and pulsed-field gradients, Wijmenga, Steensma, and van Mierlo, **124**, 459
- linear spin systems, signs of small J(¹H,¹³C) coupling constants in, DQ/ ZQ NMR experiment for determination, Otting, **124**, 503
- multidimensional solid-state NMR for correlating anisotropic interactions under MAS conditions, Fujiwara, Shimomura, and Akutsu, **124**, 147
- multidimensional spectrum, importing resolution into evolution dimension of, McGeorge et al., 129, 134
- multiple-¹³C-labeled biofluids, ultra-high-resolved HSQC spectra, Willker, Flogel, and Leibfritz, **125**, 216
- multiplet splittings in paramagnetic proteins, electron spin-nuclear spin cross-correlation effects on, Ghose and Prestegard, **128**, 138

multiplicity-edited HSQC experiments, gradient-based 1D and 2D, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274 and ¹⁵N, labeled proteins

- alanine, orientational information from REDOR sidebands, Goetz and Schaefer, **129**, 222
- assignment and pH titration of carboxylate groups in, 2D NMR experiments H(C)CO₂ and HCCO₂ for, Pellecchia *et al.*, **124**, 274
- flavodoxin, side-chain amide protons in, stereospecific assignment with H₂NCO-E.COSY, Löhr and Rüterjans, **124**, 255
- ${}^{15}N(i+1)$, ${}^{13}C\alpha(i)$, and ${}^{1}H\alpha(i)$ backbone resonances in, correlation by (CO)N(CO)CAH experiment, Dijkstra *et al.*, **125**, 149
- relaxation mechanisms of backbone carbonyl carbons in, Allard and Hard, **126**, 48
- resolution enhancement in out-and-back triple-resonance experiments applied to HCACO sequence, Baur and Kessler, **126**, 270
- NMR measurement of degree of coupled isotopic enrichment of different positions in antibiotic peptide, Miller, Egan, and Townsend, **125**, 120
- NMR spectra of rigid solids, assignment by 2D MAS separated-localfield spectroscopy, Pan, **124**, 1
- proton decoupling in humans at 4 Tesla, half-volume coil for, Adriany and Gruetter, **125**, 178
- proton-detected ¹³C-¹³C double-quantum coherence, Meissner *et al.*, **124**, 245
- REDOR dephasing by multiple spins in presence of molecular motion, Goetz and Schaefer, **127**, 147
- relaxation, role of shielding antisymmetry, Kowalewski and Werbelow, 128, 144

solid, multinuclear experiments on, Cherryman and Harris, 128, 21

- RNAs uniformly labeled with, base types in, identification of ribose-base sequential NOEs according to, Ramachandran *et al.*, **124**, 210
- selective ¹H-¹³C 1D polarization-transfer schemes, sensitivity improvements, Parella, Sánchez-Ferrando, and Virgili, **126**, 278
- selective homonuclear polarization transfer in tilted rotating frame under MAS in solids, Takegoshi, Nomura, and Terao, **127**, 206
- sensitivity- and gradient-enhanced heteronuclear coupled/decoupled HSQC-TOCSY experiments for measuring long-range heteronuclear coupling constants, Kövér, Hruby, and Uhrín, **129**, 125
- smaller biomolecules labeled with, 2D *ct*-HC(C)H-COSY for resonance assignments, Szyperski, Fernández, and Wüthrich, **128**, 228
- subspectrum of glucose in plant shoot segments: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17
- 1,3,7,10-tetramethylbenzo[c]cinnoline, NMR study of internal rotation of mutually interacting methyl groups, Wimmer amd Müller, **129**, 1
- time-reverse ODESSA experiment for rotating solids with several groups of equivalent nuclei, Reichert *et al.*, **125**, 245
- zinc acetate labeled with, 1D and 2D MAS NMR spectra of dipolarcoupled homonuclear spin- $\frac{1}{2}$ pair, Kundla *et al.*, **129**, 53
- $^{13}C^{\alpha}$
- selectively labeled peptide, selective transient heteronuclear cross relaxation in, Allard, Jarvet, and Gräslund, **124**, 97
- Calcium alginate gel
- NMR imaging with diffusion at permeable susceptibility interfaces, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355 Calcium phosphates
- synthetic, ADRF differential cross polarization spectroscopy, Ramanathan and Ackerman, **127**, 26

Calibration

in situ, in quantification of maximum-entropy reconstructions, Schmieder *et al.*, **125**, 332

Capillary

convection in, pulsed-gradient spin-echo NMR measurements, Manz, Seymour, and Callaghan, **125**, 153

Carbon multiplicities

edited HSQC experiments, gradient-based 1D and 2D, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274

Carbons

backbone carbonyl, in ¹³C, ¹⁵N-labeled protein, relaxation mechanisms in, Allard and Härd, **126**, 48

Carbonyl groups

- backbone, carbons, in ¹³C, ¹⁵N-labeled protein, relaxation mechanisms in, Allard and Härd, **126**, 48
- ¹⁷O NMR chemical shifts in, comparison of experimental and ab initio values, Jackowski, Jaszuński, and Makulski, **127**, 139

Carboxylate groups

in uniformly ¹⁵N/¹³C-labeled proteins, assignment and pH titration, 2D NMR experiments H(C)CO₂ and H<u>CCO₂</u> for, Pellecchia *et al.*, **124**, 274

associated systematic errors affecting motional analysis of biomolecules, Ross, Czisch, and King, **124**, 355

Cavity

double TE_{104} and single TE_{102} rectangular, analysis of movement of linelike samples of variable length along *x*-axis of, Mazúr, Morris, and Valko, **129**, 188

CDCl₃

- automated shimming using field profiling, Sukumar et al., **125**, 159 Cell extracts
- glioma cells, multiple-¹³C-labeled, ultra-high-resolved HSQC spectra, Willker, Flögel, and Leibfritz, **125**, 216

Cellular volume

isolated rat heart, continuous monitoring during normothermic perfusion and ischemia, Askenasy and Navon, **124**, 42 Chemical deposition

silver, bridged loop-gap resonator made by, pulsed EPR with field cycling using, Sturm, Lötz, and Voitländer, **127**, 105

Chemical-shielding anisotropy

- ²⁷Al, Vosegaard and Jakobsen, **128**, 135
- spin relaxation induced by, evaluation: importance of antisymmetric component, Kowalewski and Werbelow, 128, 144
- Chemical-shift anisotropy
 - amide proton, determination in ¹⁵N-labeled proteins using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, Tessari *et al.*, **127**, 128

proton, effect on MAS spectra of hydrate crystals, Tekely, 127, 238

Chemical-shift imaging

- 2D ¹H, human muscle metabolites, Hu, Willcott, and Moore, **126**, 187 fast, theoretical evaluation and comparison of methods, Pohmann, von Kienlin, and Haase, **129**, 145
- radial spectroscopic, Meininger et al., 125, 325
- Chemical-shift reagent
 - intracellular Na monitoring in isolated perfused rat heart in absence of, evaluation of multiple-quantum-filtered ²³Na NMR in, Tauskela *et al.*, **127**, 115
- Chemical shifts

¹⁷O

- in amides, solvent effects: quantitative linear solvation shift relationships, Díez et al., 124, 8
- in carbonyl group, comparison of experimental and ab initio values, Jackowski, Jaszuński, and Makulski, **127**, 139
- proton, methods for obtaining high-resolution spectra without spin-spin splittings, Simova, Sengstschmid, and Freeman, **124**, 104
- time-domain quantitation by wavelet-transform analysis, Serrai et al., 124, 20
- Chemical-shift tensor

¹³C, semi-empirical approach for calculation, Sternberg and Prié, 125, 8

- ³¹P, retrieval of information for dihydrogen phosphates in presence of homonuclear ³¹P-³¹P dipolar coupling, Lagier and Olivieri, **126**, 138 Chromium(IV) salts
- undiluted, 375-GHz EPR measurements, $S = \frac{1}{2}$ system, resolution in relation to exchange effects and *g*-strain broadening, Cage *et al.*, **124**, 495

- spectrum of oriented maize root tips: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17 ³⁷Cl
 - NMR spectra in plant tissues: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17

 C_3N_4

solid, N NMR shieldings in models for, second-nearest-neighbor effects, Tossell, **127**, 49

⁵⁹Co

NMR of cobalticyanide, in continuous monitoring during normothermic perfusion and ischemia, Askenasy and Navon, **124**, 42

Cobalticyanide

- ⁵⁹Co NMR, in continuous monitoring during normothermic perfusion and ischemia, Askenasy and Navon, **124**, 42
- Cog-wheel model

nuclear-spin propagation in solids, Brüschweiler and Ernst, **124**, 122 Coherence

- double- and quadruple-quantum, detection for spin $\frac{7}{2}$ excited by spin lock pulse sequences, Ageev, Mann, and Sanctuary, **128**, 12
- heteronuclear quadruple-quantum, constant-time experiment for protein NMR spectroscopy, Shaw *et al.*, **124**, 479

multiple-quantum intermolecular, with intramolecular *J* coupling in solution NMR, quantum treatment of, Ahn, Warren, and Lee, **128**, 114 proton-detected ${}^{13}C{}-{}^{13}C$ double-quantum, Meissner *et al.*, **124**, 245

Carr-Purcell-Meiboom-Gill

³⁵Cl

zero-quantum, elimination of associated effects in 1D NOE experiments using pulsed-field gradients, Stott *et al.*, **125**, 302

Coherence sidebands

- in adiabatic decoupling, elimination, Bendall and Skinner, **129**, 30 Coherence transfer
 - calculation under planar vs isotropic mixing Hamiltonians and application to heteronuclear *J* cross-polarization experiments in solution-state NMR spectroscopy, Krishnan and Rance, **124**, 205
 - distortions, in rotating frame cross-relaxation spectra, origin of correlation time dependence of, Ghose, Evans, and Prestegard, **128**, 207

Coils birdcage

calculation of B_1 fields in three dimensions: effects of shield geometry on field strength and homogeneity, Collins *et al.*, **125**, 233 resonant modes, Leifer, **124**, 51

- half-volume, for efficient proton decoupling in humans at 4 Tesla, Adriany and Gruetter, 125, 178
- planar quadrature, design using shielded-loop resonators, Stensgaard, 125, 84
- single-layer cylindrical, shielding of low-frequency magnetic interference in weak-field MRI by, Planinšič, **126**, 30
- solenoid-like, producing transverse RF fields for MR imaging, Jeong et al., 127, 73

surface

- adiabatic slice-selective excitation for, Shen and Rothman, **124**, 72
- stray-field imaging of planar films using, Glover, McDonald, and Newling, **126**, 207
- Complete-relaxation-matrix analysis
- flexible program RELAX based on, for back calculation of NOESY spectra, Görler and Kalbitzer, **124**, 177
- off-resonance ROESY spectra, for DNA duplex with G-A mismatch in solution, Kuwata *et al.*, **128**, 70

Complexed ligands

- dynamic frequency shifts: D-[1-¹³C,1-²H]glucose complexed to *E. coli* periplasmic glucose/galactose receptor, Gabel *et al.*, **128**, 101 Computers
- personal, real-time NMR imaging systems using, Kose et al., 124, 35
- (CO)N(CO)CAH experiment
- correlation of ${}^{15}N(i+1)$, ${}^{13}C\alpha(i)$, and ${}^{1}H\alpha(i)$ backbone resonances in ${}^{13}C/$ ${}^{15}N$ -labeled proteins, Dijkstra *et al.*, **125**, 149

Conformational database potential

for refinement of NMR and X-ray structures of proteins and nucleic acids, improvements and extensions, Kuszewski, Gronenborn, and Clore, **125**, 171

Conformational equilibria

- in polypeptides
 - determination of ${}^{3}J_{HC}$ coupling constants in antamanide by 2D NMR multiplet simulation, Schmidt, **124**, 298
 - dihedral-angle distribution in antamanide based on three-bond coupling information, Schmidt, **124**, 310

Constant-A algorithm

- in quantification of maximum-entropy reconstructions, Schmieder *et al.*, **125,** 332
- Continuous regularization

in automated analysis of MRS time-domain data, Totz et al., 124, 400 Continuous wavelet transform

spectral line analysis and applications, Barache, Antoine, and Dereppe, **128**, 1

Convection

- artifacts produced by, suppression in double-stimulated-echo diffusion experiments, Jerschow and Müller, **125**, 372
- in capillary, pulsed-gradient spin-echo NMR measurements, Manz, Seymour, and Callaghan, **125**, 153

Cooling

thermoelectric, for NMR sample temperature control, Gregory, Claridge, and Leonard, **124**, 228

Corrections and Additions, 125, 231; 127, 134; 128, 98

Correlation

triple resonance 4D, sequential amide protons and nitrogens-15 in deutrated proteins, HN(CA)NH pulse scheme for, Ikegami *et al.*, **124**, 214

Correlation spectroscopy

2D *ct*-HC(C)H-COSY, for resonance assignments of smaller ¹³C-labeled biomolecules, Szyperski, Fernández, and Wüthrich, **128**, 228

PFG-enhanced double-quantum-filtered pure absorption, artifact-free, including gradient pulse in evolution period, Ancian *et al.*, **125**, 348

- stripe-COSY and superstripe-COSY pulse sequences, combined with selective deuteration strategy, improved measurement of ¹H–¹H coupling constants via, Yang *et al.*, **129**, 212
- zero-quantum, under rotational-resonance conditions, determination of interatomic distances by, Koons *et al.*, **124**, 499
- Correlation time
 - rotational, internuclear vectors in DNA duplex with G–A mismatch in solution, by complete-relaxation-matrix analysis of O-ROESY spectra, Kuwata *et al.*, **128**, 70

Correlation time dependence

- coherence transfer distortions in rotating frame cross-relaxation spectra, origin, Ghose, Evans, and Prestegard, **128**, 207
- for frequency offset: selection of spin-lock transmitter position to minimize HOHAHA distortions of ROESY spectra, Chan *et al.*, **126**, 183

Corundum

- ²⁷Al, quadrupole coupling constant, magnetic field dependence, Filsinger et al., **125**, 280
- COSY (see Correlation spectroscopy)
- Coupling (see also Dipolar coupling; Quadrupole couplings; Spin-spin coupling)

hyperfine

- to nucleus of arbitrary spin, electron-spin-echo envelope modulation arising from, Ponti, **127**, 87
- for transition metals, atomic parameters for, Rieger, 124, 140
- across ice-water interface, observation by 2D time domain NMR, Weglarz and Peemoeller, **124**, 484
- scalar, in detection of influence of deuteron on ¹⁵N nucleus of side chains, Boyd *et al.*, **124**, 61
- strong, effects in 1D NOE experiments using pulsed-field gradients, Stott *et al.*, **125**, 302
- CPMG (see Carr-Purcell-Meiboom-Gill)
- Cross-correlation
 - electron spin–nuclear spin, effects on multiplet splittings in paramagnetic proteins, Ghose and Prestegard, **128**, 138
 - homonuclear cross-correlation cross-relaxation rates along effective field, application to dipole-dipole cross-correlation, Desvaux, **127**, 1
 - and spin diffusion, effect on net NOE enhancement in NMR, Madhu and Kumar, **127**, 168
- Cross-correlation rates
 - ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar, in determination of amide proton chemical-shift anisotropy in ¹⁵N-labeled proteins, Tessari *et al.*, **127**, 128

Cross peaks

- E.COSY-type, determination of heteronuclear coupling constants from, HMQC- and HSQC-based 2D NMR experiments: HECADE, Kożmiński and Nanz, 124, 383
- tilted, pure-phase homo- and heteronuclear J-spectra with, for determination of coupling constants, Koźmiński et al., 125, 193

Cross polarization

- heteronuclear
 - *J*, experiments in solution-state NMR spectroscopy, application of calculation of coherence-transfer behavior under planar vs isotropic mixing Hamiltonians, Krishnan and Rance, **124**, 205
 - and pulsed-field gradients, in doubly sensitivity-enhanced 3D HCCH– TOCSY of 13 C-labeled in H₂O, Wijmenga, Steensma, and van Mierlo, **124**, 459
 - in solid-state MAS NMR, combination of slow and fast RF field modulation for improvement of, Hediger *et al.*, **125**, 291
- -magic-angle spinning
 - ¹³C measurements under high gas pressures, Miyoshi, Takegoshi, and Terao, **125**, 383
- high-field high-speed ¹³C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee–Goldberg homonuclear decoupling, van Rossum, Förster, and de Groot, **124**, 516
- peptide samples in oriented lipid bilayers, and dipolar oscillations as function of mixing time, Tian and Cross, **125**, 220
- Cross relaxation
 - effects, elimination from measurement of relaxation rates of ¹H longitudinal modes, Norwood, **125**, 265
 - homonuclear cross-correlation cross-relaxation rates along effective field, application to dipole-dipole cross-correlation, Desvaux, **127**, 1
 - rate estimation from simultaneous fits to build-up and decay curves, robust method for, Najfeld *et al.*, **124**, 372
 - selective transient heteronuclear, in selectively ${}^{13}C^{\alpha}$ -labeled peptide, Allard, Jarvet, and Gräslund, **124**, 97
 - and spin diffusion, in solid-state NMR, Müller, Zimmermann, and Haeberlen, **126**, 66

Cross-relaxation

- rotating-frame, coherence transfer distortions in spectra, origin of correlation time dependence, Ghose, Evans, and Prestegard, **128**, 207 Crystals
- hydrate, MAS spectra, effect of proton chemical-shift anisotropy, Tekely, **127**, 238

Cyclic sampling

fresh spins for NMR signal enhancement using, Wu and Johnson, **127**, 225

Cylindrical pore

diffusive diffraction in, observations by pulsed-field-gradient NMR, Gibbs, **124**, 223

D

- Data analysis
- ¹⁵N relaxation data, applicability of model-free approach, Korzhnev, Orekhov, and Arseniev, **127**, 184

Decay curves

and build-up curves, estimating cross-relaxation rates from simultaneous fits to, robust method, Najfeld *et al.*, **124**, 372

Decomposition

singular-value, post-acquisition solvent suppression by, Zhu, Smith, and Hua, **124**, 286

Decoupling

- adiabatic (see Adiabatic decoupling)
- deuterium, and isotope dilution and variable angle sample spinning, in measurement of interproton nuclear spin dipolar couplings in liquid crystalline samples, Ciampi, De Luca, and Emsley, **129**, 207
- frequency-switched Lee–Goldberg homonuclear, high-field high-speed CP-MAS ¹³C NMR heteronuclear dipolar-correlation spectroscopy of solids with, van Rossum, Förster, and de Groot, **124**, 516
- heteronuclear spin, amplitude-modulated pulses, in liquid-state NMR, Geen and Böhlen, **125**, 376

homonuclear broadband, NMR spectra, Zangger and Sterk, 124, 486

proton, in humans at 4 Tesla, half-volume coil for, Adriany and Gruetter, **125**, 178

Dephasing

- REDOR, by multiple spins in presence of molecular motion, Goetz and Schaefer, **127**, 147
- Detection-estimation scheme
- for noisy NMR signals, applications to delayed acquisition data, Lin *et al.*, **128**, 30

Deuteration

selective, combined with stripe-COSY and superstripe-COSY pulse sequences, improved measurement of ¹H-¹H coupling constants via, Yang *et al.*, **129**, 212

Deuterium

deuterated solvents, automated shimming using field profiling, Sukumar et al., **125**, 159

NMR spectrum and T_1 of hydroxyl deuterons in single crystals of tropolone- d_1 , orientation and temperature dependence: dynamic hydrogen disorder, Detken *et al.*, **126**, 95

quadrupole couplings, solution NMR characterization of hydrogen bonds in protein by indirect measurement of, LiWang and Bax, **127**, 54

- scalar-coupled, effect on relaxation of ¹⁵N nucleus and use as probe for side-chain interactions in proteins, Boyd *et al.*, **124**, 61
- Deuterium decoupling
 - and isotope dilution and variable angle sample spinning, in measurement of interproton nuclear spin dipolar couplings in liquid crystalline samples, Ciampi, De Luca, and Emsley, **129**, 207

Deuterons

- hydroxyl, in single crystals of tropolone, NMR study: dynamic hydrogen disorder, Detken *et al.*, **126**, 95
- Diazo systems
 - off-angle fast-sample-spinning NMR and self-consistent-field calculations: studies of isolated ¹⁵N-¹⁵N spin pair, Challoner, Harris, and Tossell, **126**, 1
- Di-tert-butyl nitroxide
 - adsorption on Au(111) and NiO(111), ESR and TPD studies, evidence for long-range interactions, Katter *et al.*, **126**, 242

Dielectric resonator

- double-stacked, for sensitive EPR measurements, Jaworski, Sienkiewicz, and Scholes, 124, 87
- Difference spectroscopy
- NOE-enhanced *J*-resolved: method for observation of NOE from regions of spectral overlap, Grode and Mowery, **126**, 142
- Differential cross polarization spectroscopy
 - ADRF, synthetic calcium phosphates and bone mineral, Ramanathan and Ackerman, **127**, 26
- Diffraction
 - diffusive (see Diffusive diffraction)

Diffusion

- effects in 1D NOE experiments using pulsed-field gradients, Stott *et al.*, **125**, 302
- measurement in phantoms and tissues using SLIM localization, Yang et al., **129**, 161
- measurements with centric phase-encoded turboFLASH sequence, comparison of imaging strategies for, Coremans *et al.*, **124**, 323
- at permeable susceptibility interfaces, NMR imaging with, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355
- pulsed-field gradient NMR experiments, effect of nonconstant magneticfield gradient, Brownian-dynamics computer simulation study, Håkansson *et al.*, **124**, 343
- restricted, under generalized gradient waveforms, matrix formalism for spin echo analysis of, Callaghan, **129**, 74
- Smoluchowski drift-diffusional framework, methyl-rotor electron-spin dynamics using, Sørnes and Benetis, **125**, 52

stimulated-echo

- suppression of convection artifacts: double-STE experiments, Jerschow and Müller, **125**, 372
- using pulsed-field gradients heterogeneous media, Sørland, Hafskjold, and, Herstad, **124**, 172 short-time diffusion, Sørland, **126**, 146
- and *T*₁, measurements using MR signals from laser-hyperpolarized ¹²⁹Xe nuclei, Patyal *et al.*, **126**, 58
- Torrey–Bloch equations in NMR study of, simple solutions, Kenkre, Fukushima, and Sheltraw, **128**, 62
- Diffusion imaging
 - with hyperpolarized ³He gas, Schmidt et al., 129, 184
- Diffusive diffraction
 - in cylindrical pore, observations by pulsed-field-gradient NMR, Gibbs, **124**, 223
- 2,2'-Difluorobiphenyl
 - in isotropic and liquid crystalline phases, ¹³C-{¹H} spectra: general features of X part of ABX spin system, Edgar, Emsley, and Furby, **128.** 105
- Dihedral-angle distribution
- in antamanide, based on three-bond coupling information: polypeptidestructure determination in presence of conformational equilibria, Schmidt, **124**, 310
- Dihydrogen phosphates
- retrieval of ³¹P chemical-shift-tensor information in presence of homonuclear ³¹P-³¹P dipolar coupling, Lagier and Olivieri, **126**, 138
- 2,6-Dimethoxynaphthalene
- high-resolution 3D magic-angle turning separated-local-field experiment, Hu et al., **126**, 120
- Dimethyl sulfone
- time-reverse ODESSA experiment, Reichert et al., 125, 245
- 1,4-Diphenoxybenzene
- time-reverse ODESSA experiment, Reichert et al., 125, 245
- 2,2-Diphenyl-1-picrylhydrazyl
- as standard for high-field EPR, Krzystek et al., 125, 207
- Dipolar coupling
- amplification in 2D MAS NMR, and application to torsion angle determination in peptides, Hong *et al.*, **129**, 85
- homonuclear ³¹P-³¹P, retrieval of ³¹P chemical-shift-tensor information for dihydrogen phosphates in presence of, Lagier and Olivieri, **126**, 138
- homonuclear spin-¹/₂ pair: 1D and 2D MAS NMR spectra, Kundla *et al.*, **129**, 53
- interproton nuclear spin, measurement in liquid crystalline samples by combined variable angle sample spinning, isotope dilution, and deuterium decoupling, Ciampi, De Luca, and Emsley, **129**, 207
- networks, under magic-angle spinning, Geen et al., 125, 224

Dipolar DECODER

- determination of orientational anisotropy in glassy solids, Utz *et al.*, **128**, 217
- Dipolar interactions
 - electron spin-nuclear spin cross-correlation effects on multiplet splittings in paramagnetic proteins, Ghose and Prestegard, **128**, 138
 - ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, in determination of amide proton chemical-shift anisotropy in ¹⁵N-labeled proteins, Tessari *et al.*, **127**, 128
 - measurement of dipolar contributions to ${}^{1}J_{CH}$ splittings from magnetic-field dependence of J modulation in 2D NMR spectra, Tjandra and Bax, **124**, 512
- in solids, far-off-resonance averaging, Chang *et al.*, **124**, 165 Dipolar oscillations
 - in cross-polarized peptide samples in oriented lipid bilayers, Tian and Cross, **125**, 220

- Distortions
 - coherence transfer, in rotating frame cross-relaxation spectra, origin of correlation time dependence of, Ghose, Evans, and Prestegard, **128**, 207
 - HOHAHA, of ROESY spectra, selection of spin-lock transmitter position for minimization, Chan *et al.*, **126**, 183
- DNA
 - duplex, with G-A mismatch in solution, complete-relaxation-matrix analysis of off-resonance ROESY spectra, Kuwata *et al.*, **128**, 70
 - ¹H–¹H coupling constants, improved measurement via stripe-COSY and superstripe-COSY pulse sequences combined with selective deuteration strategy, Yang *et al.*, **129**, 212

Dosimetry

- radiation, by localized magnetic resonance spectroscopy, Roser, **124**, 271 Double-quantum-filtered magnetization-transfer experiment
 - elucidation of dipolar coupling networks under magic-angle spinning, Geen *et al.*, **125**, 224
- Double-quantum-filtered spectroscopy
 - ²H, discrimination between compartments in sciatic nerve by, Shinar, Seo, and Navon, **129**, 98
 - PFG-enhanced artifact-free pure absorption COSY including gradient pulse in evolution period, Ancian *et al.*, **125**, 348
- Double-quantum spectroscopy
 - elucidation of dipolar coupling networks under magic-angle spinning, Geen et al., 125, 224

²H, for study of molecular motion in solids, Duer and Stourton, **129**, 44 pulsed-field gradient, experiments recorded with only *z* gradients, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149

Double-quantum/zero-quantum spectroscopy

- determination of signs of small $J({}^{1}\mathrm{H},{}^{13}\mathrm{C})$ coupling constants in linear spin systems, Otting, **124**, 503
- DPPH (see 2,2-Diphenyl-1-picrylhydrazyl)
- DQ/ZQ (see Double-quantum/zero-quantum spectroscopy)

Drift diffusion

Smoluchowski model, methyl-rotor electron-spin dynamics using, Sørnes and Benetis, **125**, 52

Durene

- deuterated, cross relaxation in single crystal, Müller, Zimmermann, and Haeberlen, **126**, 66
- Dynamic contrast
- enhanced imaging and analysis of MCF7 human breast tumors at high spatial resolution, Furman-Haran, Grobgeld, and Degani, **128**, 161

Dynamic frequency shifts

- caused by electron spin-nuclear spin cross-correlation effects on multiplet splittings in paramagnetic proteins, Ghose and Prestegard, **128**, 138
- complexed ligands: D-[1-¹³C,1-²H]glucose complexed to *E. coli* periplasmic glucose/galactose receptor, Gabel *et al.*, **128**, 101
- Dynamic nuclear polarization
- imaging in very low magnetic fields with, as noninvasive technique for oximetry, Guiberteau and Grucker, **124**, 263

Dynamics

- Brownian, computer simulations, in study of influence of nonconstant magnetic-field gradient on PFG NMR diffusion experiments, Håkansson *et al.*, **124**, 343
- electron-spin, methyl rotor in radicals, in Smoluchowski drift-diffusional framework, Sørnes and Benetis, **125**, 52
- internal, in glassy polymer matrix detected by nitroxide spin probe, double-modulation ESR study, Rakvin and Veksli, **125**, 28
- large-linewidth solids, mapping by MARF spin-lock filter, De Luca et al., **126**, 159
- molecular, torsion-angle, as tool for NMR structure calculation, Stein, Rice, and Brünger, **124**, 154
- spin, 1D NOE experiments using pulsed-field gradients, Stott et al., 125, 302

Dynamic studies

 T_1 measurement using snapshot-FLASH MRI, Jivan et al., 127, 65

Е

Echo (see Spin	echoes
----------------	--------

E.COSY

- H2NCO-E.COSY method for stereospecific assignment of side-chain amide protons in proteins, Löhr and Rüterjans, 124, 255
- measurement of $J_{\rm HH}$ coupling constants, application of spin-state-selective excitation, Meissner, Duus, and Sørensen, 128, 92
- type cross peaks, determination of heteronuclear coupling constants from, HMOC- and HSOC-based 2D NMR experiments: HECADE, Kożmiński and Nanz. 124, 383
- Edge enhancement
- negative, in NMR imaging with diffusion at permeable susceptibility interfaces, Nestle, Rydyger, and Kimmich, 125, 355

Editorials

change in Editorship, 124, vii

- Effective field
- homonuclear cross-correlation cross-relaxation rates along, application to dipole-dipole cross-correlation, Desvaux, 127, 1
- Electron-nuclear dipolar interaction
- ESR study of END relaxation for AsO₄⁴⁻ spin probe in paraelectric phase of KH₂AsO₄, Rakvin and Merunka, 126, 87
- Electron-nuclear double resonance
- pulsed experiments at large thermal spin polarizations, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, 128, 199
- X-band pulsed, study of 57Fe-substituted sodalite: effect of zero-field splitting, Vardi et al., 126, 229
- Electron paramagnetic resonance
- analysis of movement of line-like samples of variable sample length along x-axis of double TE₁₀₄ and single TE₁₀₂ rectangular cavity, Mazúr, Morris, and Valko, 129, 188
- atomic hyperfine-coupling parameters for transition metals, Rieger, 124, 140
- ¹³C hyperfine interaction in complex $[Rh(CN)_6]^{4-}$ in KCl host lattice, Vugman, Giannoni, and Coelho Neto, 124, 352
- double-modulation, study of internal dynamics in glassy polymer matrix detected by nitroxide spin probe, Rakvin and Veksli, 125, 28
- double-stacked dielectric resonator for, Jaworski, Sienkiewicz, and Scholes, 124, 87
- electron-nuclear dipolar relaxation for AsO₄⁴⁻ spin probe in paraelectric phase of KH₂AsO₄, Rakvin and Merunka, 126, 87
- high-field, DPPH as standard for, Krzystek et al., 125, 207
- internal motion of methyl fragment in radicals, simulation using Smoluchowski drift diffusion model, Sørnes and Benetis, 125, 52
- longitudinally detected, in vivo measurements at microwave regions of 300, 700, and 900 MHz in rats treated with nitroxide radical, Yokoyama et al., 129, 201
- multifrequency 2D Fourier transform: X/Ku-band spectrometer, Borbat, Crepeau, and Freed, 127, 155
- pulsed (see Pulsed electron paramagnetic resonance)
- -STM results, validity, demonstration with real-time response and phasesensitive detection, Manassen, 126, 133
- 375-GHz measurements on undiluted Cr(V) salts, $S = \frac{1}{2}$ system, resolution in relation to exchange effects and g-strain broadening, Cage et al., 124.495
- and TPD, studies of adsorption of di-tert-butyl nitroxide on Au(111) and NiO(111), evidence for long-range interactions, Katter et al., 126, 242
- X-band, study of unusual center in X-irradiated zircon at 10 K, Claridge, Sutton, and Tennant, 125, 107

Electron spin

- -nuclear spin cross-correlation effects, on multiplet splittings in paramagnetic proteins, Ghose and Prestegard, 128, 138
- Electron-spin-echo envelope modulation

from hyperfine coupling to nucleus of arbitrary spin, Ponti, 127, 87

ENDOR (see Electron-nuclear double resonance)

- Error estimation
 - and optimized experiment design, general approach applied to multislice imaging of T_1 in human brain at 4.1 T, Mason, Chu, and Hetherington, 126, 18
- Errors
 - with CPMG pulse sequence, affecting motional analysis of biomolecules, Ross, Czisch, and King, 124, 355
 - systematic, associated with off-resonance oscillations in T_2 measurements, removal, Czisch, King, and Ross, 126, 154
- Erythromycin A
 - tin derivative, application of optimal detection of weak ${}^{n}J({}^{1}H-{}^{119}Sn)$ couplings by gradient-enhanced 1D and 2D HMOC, Martins et al., 124. 218
- ESR (see Electron paramagnetic resonance)
- Evolution dimension
- multidimensional NMR spectrum, importing resolution into, McGeorge et al., 129, 134
- Exchange effects
 - and g-strain broadening, effects on resolution in high-field EPR spectroscopy of undiluted Cr(V) salts, $S = \frac{1}{2}$, Cage *et al.*, **124**, 495
- Excitation (see Selective excitation)
- Excitation sculpting
 - application to construction of singly and doubly selective 1D NMR experiments, Gradwell, Kogelberg, and Frenkiel. 124, 267
 - use of RF gradients in, with application to 2D HSQC, Heikkinen, Rahkamaa, and Kilpeläinen, 127, 80
 - F

¹⁹F

delayed acquisition data, application of detection-estimation scheme for noisy NMR signals, Lin et al., 128, 30

- and ¹¹⁹Sn, solid organotin fluorides, multinuclear experiments, Cherryman and Harris, 128, 21
- Far-off-resonance conditions
- averaging of dipolar interactions in solids. Chang et al., 124, 165 Fast low-angle shot
- snapshot, dynamic T_1 measurement using, Jivan et al., 127, 65

Fast-sample-spinning spectroscopy

- off-magic-angle spinning, isolated ¹⁵N-¹⁵N spin pair in 5-methyl-2-diazobenzenesulfonic acid hydrochloride, Challoner, Harris, and Tossell, 126, 1
- Fast spectroscopic imaging

fast chemical shift imaging methods, theoretical evaluation and comparison, Pohmann, von Kienlin, and Haase, 129, 145

- Fast spiral magnetic resonance imaging
- with trapezoidal gradients, Duyn and Yang, 128, 130
- Fat

and water, protons, relative concentrations and relaxation times, singlescan imaging technique for measurement of, Ma et al., 125, 92

- FAWSETS
- flow-driven arterial water stimulation with elimination of tissue signal, Marro, 124, 240

⁵⁷Fe

substituted sodalite, X-band pulsed ENDOR study: effect of zero-field splitting, Vardi et al., 126, 229

Field cycling

pulsed EPR with, using bridged loop-gap resonator made by chemical deposition of silver, Sturm, Lötz, and Voitländer, 127, 105

Field mapping

*B*⁰ field, without pulsed gradients, projection-reconstruction spectroscopic imaging for, Gregory, **129**, 173

Field profiling

automated shimming for deuterated solvents using, Sukumar et al., 125, 159

Field stabilization

- and ²H NMR spectroscopy, in 24.6 T resistive magnet, Soghomonian *et al.*, **125**, 212
- Field strength
 - and homogeneity, B_1 fields in birdcage coil, effects of shield geometry, Collins *et al.*, **125**, 233

Films

planar, stray-field imaging using surface coil, Glover, McDonald, and Newling, **126**, 207

Filter

MARF spin-lock, slow dynamics mapping of large-linewidth solids by, De Luca *et al.*, **126**, 159

Filtering

double-quantum

- generation and elimination of intersequence stimulated echo in, mathematical analysis, Jung and Katz, **124**, 232
- and Jeener-Broeckaert sequence, ²³Na, in simultaneous acquisition and separation of quadrupolar and double-quantum signals, Jung, Cannon, and Katz, **129**, 130
- multiple-quantum, ²³Na, measurement of T_2 and content ratio of ²³Na in phantoms simulating biological systems, Jung, Cannon, and Katz, **124**, 393
- FLASH (see Fast low-angle shot)

Flavodoxin

side-chain amide protons in, stereospecific assignment with $H_2NCO-E.COSY$, Lohr and Rüterjans, **124**, 255

Flip angles

arbitrary, biselective and independent rotations with, for I and I{S} spin systems, novel pulse sequence element for, Briand and Sørensen, **125,** 202

Flip back

water, ROESY sequence for high-field NMR of biomolecules, Fulton and Ni, **129**, 93

Flow

- driven arterial water stimulation with elimination of tissue signal, Marro, **124,** 240
- evaluation, pulse sequences based on self-refocused RF and interleaved spiral readout, Takahashi, Li, and Stødkilde-jørgensen, **126**, 127 Flow wave
- propagation velocity, rapid MR measurement, *in vitro* validation Kraft *et al.*, **126**, 103

Fluid distributions

in fractured systems, NMR spectroscopic techniques for characterization, Chang *et al.*, **126**, 213

Fluids

complex, effects of slow motions, absorption lineshapes in 2D ESR and, Saxena and Freed, **124**, 439

Foam

- blood, NMR of laser-polarized ¹²⁹Xe, Tseng et al., 126, 79
- Fourier transform spectroscopy
- interlaced, application to echo-planar spectroscopic imaging, Metzger and Hu, **125**, 166
- multifrequency 2D ESR: X/Ku-band spectrometer, Borbat, Crepeau, and Freed, **127**, 155
- NMR experimental-parameter selection, graphical approach, Early, Donahue, and Williams, **125**, 163

Fractures

in porous media, characterization with NMR spectroscopic techniques, Chang et al., **126**, 213 Free induction decay

truncated multidimensional, procedure for extraction of constant-evolution-frequency data from, McGeorge *et al.*, **129**, 134

Frequencies

in NMR, signs of, Levitt, 126, 164

Fresh spins

for NMR signal enhancement, through programmed sample translation cycles, Wu and Johnson, **127**, 225

G

⁷¹Ga

- optical detection of nuclear magnetic resonances of GaAs/AlGaAs heterostructures, lineshapes obtained, Schreiner *et al.*, **124**, 80
- Gallium arsenide
 - -AlGaAs heterostructures, optically detected nuclear magnetic resonance in, lineshapes, Schreiner *et al.*, **124**, 80

Gas pressure

high, ¹³C CPMAS measurements under, Miyoshi, Takegoshi, and Terao, **125**, 383

Gels

Ca-alginate, NMR imaging with diffusion at permeable susceptibility interfaces, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355

Glasses

- solid, orientational anisotropy determination by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217
- Glucose
 - D-[1-¹³C,1-²H]-labeled, complexed to *E. coli* periplasmic glucose/galactose receptor, dynamic frequency shifts, Gabel *et al.*, **128**, 101

Glucose/galactose receptor

E. coli periplasmic, D-[1-¹³C,1-²H]glucose complexed to, dynamic frequency shifts, Gabel *et al.*, **128**, 101

Glycine

and alanine, substitution for tryptophan, effects on heterogeneity of gramicidin A analogs in micelles, Hinton *et al.*, **124**, 132

Gold

Au(111), and NiO(111), adsorption of di-*tert*-butyl nitroxide, ESR and TPD studies: evidence for long-range interactions, Katter *et al.*, **126**, 242

Gradients (see also Pulsed-field gradients)

B₁, fast NMR imaging with, Raulet et al., 124, 259

- continuously oscillating, 4D ¹H and ²³Na imaging using, Star-Lack *et al.*, **124**, 420
- electric-field, interaction with nuclear quadrupole moment, magnetic field dependence, Filsinger et al., 125, 280
- nonconstant, effect on PFG NMR diffusion experiments, Brownian-dynamics computer simulation study, Håkansson *et al.*, **124**, 343
- radiofrequency-field
 - in modification of BIRD/TANGO sequences to eliminate uncoupled magnetization, Sodickson and Cory, **125**, 340
 - use in excitation sculpting, with application to 2D HSQC, Heikkinen, Rahkamaa, and Kilpeläinen, **127**, 80
- spiral readout, and self-refocused RF, pulse sequence for flow evaluation based on, Takahashi, Li, and Stødkilde-jørgensen, **126**, 127
- trapezoidal, fast spiral MRI with, Duyn and Yang, 128, 130
- z, PFG DQ experiments recorded with, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149

Gradient selection

¹H-¹³C 1D polarization-transfer schemes with, sensitivity improvement, Parella, Sánchez-Ferrando, and Virgili, **126**, 278

Gradient sequence

radiofrequency, BIRD/TANGO, to eliminate uncoupled magnetization, Sodickson and Cory, **125**, 340

Gramicidin A

¹⁵N_{1,3,5,7}-labeled, cross-polarized samples in oriented lipid bilayers, dipolar oscillations in, Tian and Cross, 125, 220

Gramicidin A analogs

- in micelles, heterogeneity, effects of alanine and glycine substitution for tryptophan, Hinton et al., 124, 132
- in SDS micelles, relative motion of indole ring of tryptophans in, proton T_1 , T_2 , and NOE study, Hinton and Washburn-McCain, 125, 259

Н

 ^{2}H

- double-quantum-filtered spectroscopy, discrimination between compartments in sciatic nerve by, Shinar, Seo, and Navon, 129, 98
- double-quantum NMR spectroscopy for study of molecular motion in solids, Duer and Stourton, 129, 44
- NMR spectroscopy in 24.6 T resistive magnet, Soghomonian et al., 125, 212
- solid-state NMR analyses of peptide-membrane interactions, preparation of oriented lipid bilaver on ultrathin polymers for. Augé et al., 124. 455
- spectrum from maize shoot segments: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill et al., 127, 17 Hard-sphere approximation
- dimer formation, in determination of oligomeric state of proteins in solution from pulsed-field-gradient self-diffusion coefficient measurements, Krishnan, 124, 468

HCACO sequence

resolution enhancement in out-and-back triple-resonance experiments applied to, Baur and Kessler, 126, 270

HD

impurities, in solid para-H₂, theory of multiple NMR spin echoes of, Kisvarsanyi and Sullivan, 127, 192

³He

- hyperpolarized, diffusion imaging with, Schmidt et al., 129, 184 Heart
- human, dynamic T_1 measurement using snapshot-FLASH MRI. Jivan et al., 127, 65

human, imaging

- at 1.5, 3, and 4 T, intrinsic signal-to-noise ratio in, Wen et al., 125, 65
- B_1 field distribution and intrinsic signal-to-noise ratio in, simulation as function of static magnetic field, Singerman et al., 125, 72

rat

- isolated, intracellular volume, continuous monitoring during normothermic perfusion and ischemia, Askenasy and Navon, 124, 42
- isolated perfused in absence of chemical-shift reagent, monitoring of intracellular Na content, multiple-quantum-filtered ²³Na NMR in, Tauskela et al., 127, 115

Heterogeneous media

diffusion measurements in, stimulated-echo method using pulsed-field gradients, Sørland, Hafskjold, and, Herstad, 124, 172

NMR signal in, weak-diffusion theory of, Jensen and Chandra, 126, 193 Heteronuclear correlation

high-resolution, between quadrupolar and spin- $\frac{1}{2}$ nuclei, using multiplequantum MAS, Wang, De Paul, and Bull, 125, 364

multiple-quantum

- based 3D maximum-quantum correlation spectroscopy, Liu et al., 129, 67
- gradient-enhanced 1D and 2D, optimal detection of weak ${}^{n}J({}^{1}H-{}^{119}Sn)$ couplings by, application to tin derivative of erythromycin A, Martins et al., 124, 218
- and HSQC, based 2D NMR experiments, for determination of heteronuclear coupling constants from E.COSY-type cross peaks: HEC-ADE, Kożmiński and Nanz, 124, 383

single-quantum

- 2D, application of use of RF gradients in excitation sculpting, Heikkinen, Rahkamaa, and Kilpeläinen, 127, 80
- gradient-based 1D and 2D multiplicity-edited experiments, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, 126, 274
- and HMQC, based 2D NMR experiments, for determination of heteronuclear coupling constants from E.COSY-type cross peaks: HEC-ADE, Kożmiński and Nanz, 124, 383
- measurement of degree of coupled isotopic enrichment of different positions in antibiotic peptide, Miller, Egan, and Townsend, 125, 120
- and TOCSY, sensitivity- and gradient-enhanced coupled/decoupled experiments for measuring long-range heteronuclear coupling constants, Kövér, Hruby, and Uhrín, 129, 125
- ultra-high-resolved HSQC spectra of multiple-13C-labeled biofluids, Willker, Flögel, and Leibfritz, 125, 216
- Heteronuclear couplings from ASSCI-domain experiments with E.COSYtype cross peaks
 - HECADE: HMQC- and HSQC-based 2D NMR experiments for determination of heteronuclear coupling constants, Kożmiński and Nanz, 124. 383

Heteronuclear dipolar-correlation spectroscopy

high-field high-speed CP-MAS ¹³C-NMR, of solids, with frequencyswitched Lee-Goldberg homonuclear decoupling, van Rossum, Förster, and de Groot, 124, 516

Heteronuclear Hartmann-Hahn transfer

with different bandwidths for spins I and S: kin HEHAHA, Carlomagno, Luy, and Glaser, 126, 110

Heteronuclear J cross-polarization

experiments in solution-state NMR spectroscopy, application of calculation of coherence-transfer behavior under planar vs isotropic mixing Hamiltonians, Krishnan and Rance, 124, 205

Heteronuclear multidimensional nuclear magnetic resonance

protein assignments using mean-field simulated annealing, Buchler et al., 125, 34

Heteronuclear spectroscopy

- pure-phase J-spectra with tilted cross peaks, for determination of coupling constants, Koźmiński et al., 125, 193
- Heterostructures
 - GaAs/AlGaAs, lineshapes of optically detected nuclear magnetic resonance in, Schreiner et al., 124, 80

High-field spectroscopy

biomolecules, ROESY with water flip back for, Fulton and Ni, 129, 93 EPR, potential utility of DPPH as standard for, Krzystek et al., 125, 207 high-resolution, sample-induced RF perturbations in, Crozier et al., 126, 39

High-resolution spectroscopy

high-field, sample-induced RF perturbations in, Crozier et al., 126, 39 liposomes, using MAS NMR, intermediate-size vesicles, Traikia et al., 125, 140

MAS probe for, shimming, Sodickson and Cory, 128, 87

- on-axis shims for, fast automatic adjustment, Shen and Rothman, 127, 229
- 3D magic-angle turning separated-local-field experiment, Hu et al., 126, 120
- HMOC (see Heteronuclear correlation, multiple-quantum)

HOHAHA effects

coherence transfer distortions of ROESY spectra from, origin of correlation time dependence of, Ghose, Evans, and Prestegard, 128, 207

distortions of ROESY spectra from, selection of spin-lock transmitter position for minimization, Chan et al., 126, 183

Homogeneity

and field strength, B_1 fields in birdcage coil, effects of shield geometry, Collins et al., 125, 233

240

Homonuclear spectroscopy

- cross-correlation cross-relaxation rates along effective field, application to dipole-dipole cross-correlation, Desvaux, **127**, 1
- 1D and 2D MAS NMR spectra of dipolar-coupled homonuclear spinpair, Kundla et al., 129, 53
- pure-phase J-spectra with tilted cross peaks, for determination of coupling constants, Koźmiński et al., 125, 193
- HQQC (see Coherence, heteronuclear quadruple-quantum)
- HSQC (see Heteronuclear correlation, single-quantum)
- Hydrate
 - crystals, MAS spectra, effect of proton chemical-shift anisotropy, Tekely, 127, 238
- Hydrogen bonding effects
- nitrogen NMR shielding of 1,2,4,5-tetrazine, Witanowski et al., **124**, 127 Hydrogen bonds
- in protein, solution NMR characterization by indirect measurement of deuterium quadrupole couplings, LiWang and Bax, **127**, 54
- Hydrogen disorder
- dynamic, in solid tropolone: single-crystal NMR study of hydroxyl deuterons, Detken *et al.*, **126**, 95
- Hydroxyapatite
 - ADRF differential cross polarization spectroscopy, Ramanathan and Ackerman, **127**, 26
- Hydroxyl
- deuterons, in single crystals of tropolone, NMR study: dynamic hydrogen disorder, Detken *et al.*, **126**, 95
- Hyperfine coupling
 - to nucleus of arbitrary spin, electron-spin-echo envelope modulation arising from, Ponti, **127**, 87
- for transition metals, atomic parameters for, Rieger, **124**, 140 Hyperfine interaction
- absolute sign determination: pulsed ENDOR spectroscopy at large thermal spin polarizations, Bennebroek and Schmidt, **128**, 199
- ¹³C, in complex [Rh(CN)₆]⁴⁻ in KCl host lattice, EPR study, Vugman, Giannoni, and Coelho Neto, **124**, 352
- Hyperpolarized nuclei
 - ¹²⁹Xe, T_1 and diffusion measurements using MR signals from, Patyal *et al.*, **126**, 58
- Ice
- -water interface, coupling across, observation by 2D time domain NMR, Weglarz and Peemoeller, 124, 484

I

- Imaging
- chemical-shift
- 2D ¹H, human muscle metabolites, Hu, Willcott, and Moore, **126**, 187 radial spectroscopic, Meininger *et al.*, **125**, 325
- compact MRI magnet design for, by stochastic optimization, Crozier and Doddrell, **127**, 233
- diffusion, with hyperpolarized ³He gas, Schmidt et al., 129, 184
- with diffusion at permeable susceptibility interfaces, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355
- dynamic contrast-enhanced, and analysis, MCF7 human breast tumors at high spatial resolution, Furman-Haran, Grobgeld, and Degani, **128**, 161
- dynamic nuclear polarization, in very low magnetic fields, as noninvasive technique for oximetry, Guiberteau and Grucker, **124**, 263
- echo-planar spectroscopic, application of interlaced Fourier transform, Metzger and Hu, **125**, 166
- fast chemical shift, theoretical evaluation and comparison of methods, Pohmann, von Kienlin, and Haase, **129**, 145
- fast NMR, with B_1 gradients, Raulet *et al.*, **124**, 259
- fast spiral MRI with trapezoidal gradients, Duyn and Yang, 128, 130

four-dimensional ¹H and ²³Na, using continuously oscillating gradients, Star-Lack *et al.*, **124**, 420

human cardiac

- at 1.5, 3, and 4 T, intrinsic signal-to-noise ratio in, Wen et al., 125, 65
- B_1 field distribution and intrinsic signal-to-noise ratio in, simulation as function of static magnetic field, Singerman *et al.*, **125**, 72
- multislice, T_1 in human brain at 4.1 T, application of general approach to error estimation and optimized experiment design, Mason, Chu, and Hetherington, **126**, 18
- ¹⁷O-decoupled proton MR spectroscopy, in tissue model, Stolpen, Reddy, and Leigh, **125**, 1
- projection-reconstruction, for B_0 field plotting and shimming without pulsed gradients, Gregory, **129**, 173
- radial spectroscopic, Meininger et al., 125, 325
- real-time NMR, systems using personal computers, Kose et al., 124, 35
- single-scan technique for measurement of relative concentrations of fat and water protons and transverse relaxation times, Ma *et al.*, **125**, 92
- snapshot-FLASH, dynamic T_1 measurement using, Jivan *et al.*, **127**, 65 solenoid-like coil producing transverse RF fields for, Jeong *et al.*, **127**, 73
- solid rocket propellants at 14.1 T, Maas, Merwin, and Cory, 129, 105
- solid-state, large-linewidth solids: slow dynamics mapping by MARF spin-lock filter, De Luca et al., 126, 159
- strategies for diffusion measurements with centric phase-encoded turboFLASH sequence, comparison, Coremans *et al.*, **124**, 323
- stray-field, of planar films, using surface coil, Glover, McDonald, and Newling, **126**, 207
- 2D rotating-frame NQR, Robert and Pusiol, 127, 109
- weak-field MRI, low-frequency magnetic interference in, shielding by single-layer cylindrical coil, Planinšič, 126, 30
- Immunoglobulin
 - integration of optimized Water-PRESS pulse sequence for, Price, Hayamizu, and Arata, **126**, 256

Impurities

- HD, in solid para- H_2 , theory of multiple NMR spin echoes of, Kisvarsanyi and Sullivan, **127**, 192
- Inductance
 - mutual, in bird-cage resonator, Tropp, 126, 9
- Inhomogeneity
 - magnetic field, effect on T_2 of quadrupolar nuclei, measurement by multiple-quantum-filtered NMR, Eliav *et al.*, **128**, 82
- Interatomic distances
 - determination by zero-quantum correlation spectroscopy under rotationalresonance conditions, Koons et al., **124**, 499

Interfaces

- ice-water, coupling across, observation by 2D time domain NMR, Weglarz and Peemoeller, **124**, 484
- permeable susceptibility, NMR imaging with diffusion at, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355
- Interference
 - low-frequency magnetic, shielding in weak-field MRI by single-layer cylindrical coil, Planinšič, 126, 30
- Interference effects
- elimination in 1D NOE experiments using pulsed-field gradients, Stott et al., **125**, 302

Interleukin-2

NMR spectroscopy, constant-time HQQC experiment for, Shaw *et al.*, **124**, 479

Inversion-recovery experiments

water, intensity jumping and beating due to radiation damping, Chen, Mao, and Ye, **124**, 490 Ischemia

- and perfusion, normothermic, continuous monitoring of intracellular volumes in isolated rat heart during, Askenasy and Navon, **124**, 42 Isotope dilution
- and variable angle sample spinning and deuterium decoupling, in measurement of interproton nuclear spin dipolar couplings in liquid crystalline samples, Ciampi, De Luca, and Emsley, **129**, 207

Isotopic enrichment

coupled, of different positions in antibiotic peptide, NMR measurement, Miller, Egan, and Townsend, **125**, 120

Isotropic mixing Hamiltonian

versus planar Hamiltonian, coherence-transfer calculation under, and application to heteronuclear *J* cross-polarization experiments in solution-state NMR spectroscopy, Krishnan and Rance, **124**, 205

Isotropic solvents

and liquid crystalline solvents, ¹³C-{¹H} spectra of 2,2'-difluorobiphenyl in: X part of ABX spin system, Edgar, Emsley, and Furby, **128**, 105

J

J-coupling (see Spin-spin coupling)

Jeener-Broeckaert sequence

and double-quantum filtering, ²³Na, in simultaneous acquisition and separation of quadrupolar and double-quantum signals, Jung, Cannon, and Katz, **129**, 130

J-resolved difference spectroscopy

NOE-enhanced: observation of NOE from regions of spectral overlap, Grode and Mowery, **126**, 142

J spectroscopy

two-dimensional, based methods for obtaining proton chemical-shift spectra, Simova, Sengstschmid, and Freeman, **124**, 104

Κ

KH₂AsO₄

paraelectric phase, AsO₄⁻ spin probe in, ESR study of electron-nuclear dipolar relaxation, Rakvin and Merunka, **126**, 87

kin sequences

- HEHAHA: heteronuclear Hartmann-Hahn transfer with different bandwidths for spins I and S, Carlomagno, Luy, and Glaser, **126**, 110 Ku band
- multifrequency 2D Fourier transform ESR X/Ku-band spectrometer, Borbat, Crepeau, and Freed, 127, 155

L

Laser-polarized nuclei

¹²⁹Xe, NMR in blood foam, Tseng et al., **126**, 79

Latex coating

- stray-field imaging using surface coil, Glover, McDonald, and Newling, 126, 207
- Linear prediction combined with singular-value decomposition
- automated analysis of MRS time-domain data with, use of continuous regularization in, Totz *et al.*, **124**, 400

Lineshape

- absorption, in 2D ESR, and effects of slow motions in complex fluids, Saxena and Freed, **124**, 439
- Gauss-Lorentz, accurate numerical approximation to, Grivet, **125**, 102 NMR, modeling using logspline density functions, Raz, Fernandez, and

Gillespie, **127**, 173

optically detected nuclear magnetic resonance in GaAs/AlGaAs heterostructures, Schreiner *et al.*, **124**, 80

Lipids

oriented bilayers

cross-polarized peptide samples in, dipolar oscillations, Tian and Cross, **125**, 220

preparation on ultrathin polymers for solid-state NMR analyses of peptide-membrane interactions, Augé *et al.*, **124**, 455

Liposomes

high-resolution spectra using MAS NMR, intermediate-size vesicles, Traikia et al., **125**, 140

Liquid crystalline samples

interproton nuclear spin dipolar couplings in, measurement by combined variable angle sample spinning, isotope dilution, and deuterium decoupling, Ciampi, De Luca, and Emsley, **129**, 207

Liquid crystalline solvents

and isotropic solvents, ¹³C-{¹H} spectra of 2,2'-difluorobiphenyl in: X part of ABX spin system, Edgar, Emsley, and Furby, **128**, 105

Liquids

NMR, amplitude-modulated decoupling pulses in, Geen and Böhlen, **125**, 376

Localized spectroscopy

- radiation dosimetry by, Roser, 124, 271
- SLIM, diffusion measurement in phantoms and tissues using, Yang et al., **129**, 161
- Logspline density
 - functions, modeling NMR lineshapes using, Raz, Fernandez, and Gillespie, 127, 173

Longitudinally detected electron spin resonance

in vivo measurements at microwave regions of 300, 700, and 900 MHz in rats treated with nitroxide radical, Yokoyama *et al.*, **129**, 201

- Longitudinal modes
 - ¹H, measurement of relaxation rates, Norwood, **125**, 265

Lung

wet/dry ratio and T_1 and T_2 distributions, ¹H NMR measurements, Estilaei *et al.*, **124**, 410

Lysozyme

Macromolecules

- integration of optimized Water-PRESS pulse sequence for, Price, Hayamizu, and Arata, **126**, 256
 - Μ

biological, pulse sequences for, integration of optimized Water-PRESS pulse sequence, Price, Hayamizu, and Arata, **126**, 256

- Magic angle in rotating frame
 - spin-lock filter, slow dynamics mapping of large-linewidth solids by, De Luca *et al.*, **126**, 159
- Magic-angle spinning
 - broadband polarization transfer under, application to total through-spacecorrelation NMR spectroscopy, Baldus and Meier, **128**, 172
 - correlating anisotropic interactions under, multidimensional solid-state NMR for, Fujiwara, Shimomura, and Akutsu, **124**, 147
 - -cross polarization
 - ¹³C measurements under high gas pressures, Miyoshi, Takegoshi, and Terao, **125**, 383
 - high-field high-speed ¹³C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee–Goldberg homonuclear decoupling, van Rossum, Förster, and de Groot, **124**, 516
 - solid-state, improved CP in, combination of slow and fast RF field modulation for, Hediger *et al.*, **125**, 291
 - dipolar coupling networks under, Geen et al., 125, 224
 - high-resolution probe, shimming, Sodickson and Cory, 128, 87
 - high-resolution spectra of liposomes using, intermediate-size vesicles, Traikia et al., 125, 140
 - hydrate crystals, influence of proton chemical-shift anisotropy, Tekely, **127**, 238
 - multiple-quantum
 - developments for spin- $\frac{3}{2}$ nuclei, Duer and Stourton, **124**, 189
 - high-resolution heteronuclear correlation between quadrupolar and $spin-\frac{1}{2}$ nuclei using, Wang, De Paul, and Bull, **125**, 364

2D, quadrupolar nuclei

- acquisition of whole echo, Brown and Wimperis, 124, 279
- comparison of methods, Brown and Wimperis, 128, 42
- multiple-quantum NMR spectra of quadrupolar nuclei, indirect spin-spin coupling in, Wu *et al.*, **124**, 237
- 1D and 2D, NMR spectra of dipolar-coupled homonuclear spin-¹/₂ pair, Kundla *et al.*, **129**, 53
- quartz crystal temperature sensor for, Simon, 128, 194
- selective homonuclear polarization transfer in tilted rotating frame, Takegoshi, Nomura, and Terao, **127**, 206
- slow spinning conditions, spinning sidebands arising from tightly *J*-coupled spin pairs, Wu *et al.*, **124**, 366
- 2D, coupling amplification in, and application to torsion angle determination in peptides, Hong *et al.*, **129**, 85
- Magic-angle-spinning separated-local-field spectroscopy
- 2D, assignment of ¹³C NMR spectra of rigid solids by, Pan, **124**, 1 Magic-angle turning
- high-resolution 3D separated-local-field experiment using, Hu et al., **126**, 120
- Magnesium pyrophosphate
- phosphorus dipolar coupling networks under magic-angle spinning, Geen *et al.*, **125**, 224
- Magnetic equivalence
- between nuclei of spin greater than $\frac{1}{2}$ in presence of relaxation, Szymański, **127**, 199
- Magnetic field (see also Gradients; Pulsed-field gradients)
- B₀ field plotting and shimming without pulsed gradients, projection-reconstruction spectroscopic imaging for, Gregory, **129**, 173
- dependence of J modulation in 2D NMR spectra on, measurement of dipolar contributions to ${}^{1}J_{CH}$ splittings from, Tjandra and Bax, **124**, 512
- dependence of nuclear quadrupole-electric-field gradient interaction on, Filsinger *et al.*, **125**, 280
- inhomogeneity, effect on T_2 of quadrupolar nuclei, measurement by multiple-quantum-filtered NMR, Eliav *et al.*, **128**, 82
- static, simulation of B_1 field distribution and intrinsic signal-to-noise ratio in cardiac MRI as function of, Singerman *et al.*, **125**, 72
- very low, dynamic nuclear polarization imaging in, as noninvasive technique for oximetry, Guiberteau and Grucker, **124**, 263
- Magnetic-field gradient (see Gradients; Pulsed-field gradients)
- Magnetic susceptibility
 - bulk, in resolution of internal and external signals in NMR spectra of plant tissues, Shachar-Hill *et al.*, **127**, 17
- NMR imaging with diffusion at permeable susceptibility interfaces, negative edge enhancement in, Nestle, Rydyger, and Kimmich, **125**, 355 Magnetization
- uncoupled, RF gradient BIRD/TANGO sequence for elimination of, Sodickson and Cory, **125**, 340
- Magnetization-transfer experiment
- elucidation of dipolar coupling networks under magic-angle spinning, Geen et al., **125**, 224
- Magnets
 - compact MRI, design by stochastic optimization, Crozier and Doddrell, **127**, 233
- 24.6 T resistive, field stabilization and ²H NMR spectroscopy in, Soghomonian *et al.*, **125**, 212
- MARF (see Magic angle in rotating frame)
- Matrix formalism
- for spin echo analysis of restricted diffusion under generalized gradient waveforms, Callaghan, **129**, 74
- Maximum-entropy reconstructions
- quantification, Schmieder et al., 125, 332
- Maximum-quantum correlation HMQC NMR spectroscopy 3D, description, Liu *et al.*, **129**, 67

Mechanically detected magnetic resonance

- at room temperature and normal pressure, Schaff and Veeman, **126**, 200 Meetings and Announcements, **125**, 232, 385; **126**, 158, 287; **127**, 137,
 - 241; 128, 99, 233; 129, 109, 224
- Megestrol acetate
- NOE-enhanced *J*-resolved difference spectroscopy: observation of NOE from regions of spectral overlap, Grode and Mowery, **126**, 142
- Membranes
 - -peptide interactions, solid-state NMR analyses, preparation of oriented lipid bilayer on ultrathin polymers for, Augé *et al.*, **124**, 455
- Mes₃SnF
- solid, multinuclear experiments on, Cherryman and Harris, **128**, 21 Metabolites
- human muscle, 2D ¹H chemical-shift imaging, Hu, Willcott, and Moore, **126**, 187
- Metals
- transition, atomic hyperfine-coupling parameters for, Rieger, **124**, 140 5-Methyl-2-diazobenzenesulfonic acid hydrochloride
- isolated ¹⁵N-¹⁵N spin pair, off-angle fast-sample-spinning NMR and selfconsistent-field calculations, Challoner, Harris, and Tossell, **126**, 1
- Methyl groups
 - mutually interacting, internal rotation, ¹³C NMR study, Wimmer amd Müller, **129**, 1
- Methyl rotor
- electron-spin dynamics in Smoluchowski drift-diffusional framework, Sørnes and Benetis, **125**, 52
- Micelles
 - gramicidin A analogs in, heterogeneity, effects of alanine and glycine substitution for tryptophan, Hinton *et al.*, **124**, 132
 - SDS, tryptophans in gramicidin analogs in, relative motion of indole ring, proton T_1 , T_2 , and NOE study, Hinton and Washburn-McCain, **125**, 259
- Mixing sequences
 - kin HEHAHA: heteronuclear Hartmann-Hahn transfer with different bandwidths for spins I and S, Carlomagno, Luy, and Glaser, **126**, 110
- Model-free approach
 - applicability: ¹⁵N relaxation data analysis, Korzhnev, Orekhov, and Arseniev, **127**, 184
- Modulation
 - decoupling pulse amplitude, in liquid-state NMR, Geen and Böhlen, **125**, 376
 - *J*, magnetic-field dependence in 2D NMR spectra, measurement of dipolar contributions to ¹*J*_{CH} splittings from, Tjandra and Bax, **124**, 512
 - RF field, combination of slow and fast, for improved cross polarization in solid-state MAS NMR, Hediger *et al.*, **125**, 291
- Molecular diffusion (see Diffusion)
- Molecular dynamics
 - torsion-angle, as tool for NMR structure calculation, Stein, Rice, and Brünger, **124**, 154
- Motion

molecular

- REDOR dephasing by multiple spins in presence of, Goetz and Schaefer, **127**, 147
- in solids, ²H double-quantum NMR spectroscopy for study of, Duer and Stourton, **129**, 44
- relative, indole ring of tryptophans in gramicidin analogs incorporated into SDS micelles, ¹H *T*₁, *T*₂, and NOE study, Hinton and Washburn-McCain, **125**, 259
- slow, in complex fluids, absorption lineshapes in 2D ESR and, Saxena and Freed, **124**, 439

Motional analysis

biomolecules, systematic errors associated with CPMG pulse sequence affecting, Ross, Czisch, and King, **124**, 355

Movement

line-like samples of variable length along *x*-axis of double TE_{104} and single TE_{102} rectangular cavity, analysis, Mazúr, Morris, and Valko, **129**, 188

- E.COSY-type measurement of $J_{\rm HH}$ coupling constants, application of spin-state-selective excitation, Meissner, Duus, and Sørensen, **128**, 92
- evolution dimension, importing resolution into, McGeorge et al., 129, 134
- pure-phase, by reference-frequency shift, Venkata Raman and Chandrakumar, **125**, 188
- solid-state, for correlating anisotropic interactions under MAS conditions, Fujiwara, Shimomura, and Akutsu, **124**, 147
- triple resonance 4D correlation of sequential amide protons and nitrogens-15 in deutrated proteins, HN(CA)NH pulse scheme for, Ikegami *et al.*, **124**, 214
- Multifrequency electron spin resonance
 - 2D Fourier transform: X/Ku-band spectrometer, Borbat, Crepeau, and Freed, **127**, 155
- Multiple-quantum-filtered spectroscopy
 - magnetic field inhomogeneity effect on T_2 of quadrupolar nuclei measured by, Eliav *et al.*, **128**, 82
 - ²³Na, in monitoring of intracellular Na in isolated perfused rat heart in absence of chemical-shift reagent, Tauskela *et al.*, **127**, 115
- Multiple-quantum spectroscopy

MAS

- high-resolution heteronuclear correlation between quadrupolar and spin-¹/₂ nuclei using, Wang, De Paul, and Bull, **125**, 364
- quadrupolar nuclei, indirect spin–spin coupling in, Wu *et al.*, **124**, 237 for spin $\frac{3}{2}$ nuclei, developments, Duer and Stourton, **124**, 189

2D MAS, quadrupolar nuclei

- acquisition of whole echo, Brown and Wimperis, 124, 279
- comparison of methods, Brown and Wimperis, 128, 42

Multiplets

2D NMR, simulation, determination of ${}^{3}J_{HC}$ coupling constants in antamanide by, for analysis of conformational equilibria, Schmidt, **124**, 298

Multiplet splittings

in paramagnetic proteins, electron spin-nuclear spin cross-correlation effects on, Ghose and Prestegard, **128**, 138

Multiplicity-edited experiments

HSQC, gradient-based 1D and 2D, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274

Muscle

- biomedical magnetic resonance spectroscopy, application of wavelettransform analysis, Serrai et al., 124, 20
- human, metabolites, 2D ¹H chemical-shift imaging, Hu, Willcott, and Moore, **126**, 187

Ν

- ^{14}N
 - nitrate and ammonia subspectra of oriented maize root tips: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17
 - nitrogen NMR shielding of 1,2,4,5-tetrazine, hydrogen bonding and solvent polarity effects, Witanowski et al., **124**, 127
 - sodium nitroprusside, quadrupole coupling constant, magnetic field dependence, Filsinger et al., **125**, 280

¹⁵N

and amide protons, in deuterated proteins, triple-resonance 4D correlation, HN(CA)NH pulse scheme for, Ikegami *et al.*, **124**, 214

- alanine in, orientational information from REDOR sidebands, Goetz and Schaefer, **129**, 222
- assignment and pH titration of carboxylate groups in, 2D NMR experiments H(C)CO₂ and HCCO₂ for, Pellecchia *et al.*, **124**, 274
- flavodoxin, side-chain amide protons in, stereospecific assignment with H_2NCO -E.COSY, Löhr and Rüterjans, **124**, 255
- $^{15}N(i+1)$, $^{13}C\alpha(i)$, and $^{1}H\alpha(i)$ backbone resonances in, correlation by (CO)N(CO)CAH experiment, Dijkstra *et al.*, **125**, 149
- relaxation mechanisms of backbone carbonyl carbons in, Allard and Härd, **126**, 48
- resolution enhancement in out-and-back triple-resonance experiments applied to HCACO sequence, Baur and Kessler, **126**, 270
- -¹H dipolar interactions, amplification in 2D MAS NMR, and application to torsion angle determination in peptides, Hong *et al.*, **129**, 85
- isolated ¹⁵N-¹⁵N spin pair in 5-methyl-2-diazobenzenesulfonic acid hydrochloride, off-angle fast-sample-spinning NMR and self-consistent-field calculations, Challoner, Harris, and Tossell, **126**, 1
- ¹⁵N_{1,3,5,7}-labeled gramicidin A, cross-polarized samples in oriented lipid bilayers, dipolar oscillations in, Tian and Cross, **125**, 220
- NMR measurement of degree of coupled isotopic enrichment of different positions in antibiotic peptide, Miller, Egan, and Townsend, **125**, 120
- NMR spectra in plant tissues: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17
- proteins labeled with, amide proton chemical-shift anisotropy determination using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, Tessari *et al.*, **127**, 128
- RAP 17-97, E.COSY-type measurement of $J_{\rm HH}$ coupling constants, application of spin-state-selective excitation, Meissner, Duus, and Sørensen, **128**, 92
- relaxation, effect of scalar-coupled deuterium and use as probe for sidechain interactions in proteins, Boyd *et al.*, **124**, 61
- relaxation data analysis, applicability of model-free approach, Korzhnev, Orekhov, and Arseniev, **127**, 184
- robust method for estimating cross-relaxation rates from simultaneous fits to build-up and decay curves, Najfeld *et al.*, **124**, 372
- second-nearest-neighbor effects on N NMR shieldings in models for solid Si₃N₄ and C₃N₄, Tossell, **127**, 49
- spin relaxation, effects of shielding anisotropy and antisymmetry, Kowalewski and Werbelow, 128, 144
- 2D NMR spectroscopy of peptides on beads, Jelinek et al., 125, 185
- 2D spectra with partial overlap, measurement of relaxation rates from, Mishra *et al.*, **125**, 358
- uniformly labeled protein, ${}^{1}H T_{1\rho}$ measurement with heteronuclear 2D spectroscopy, Almeida and Opella, **124**, 509

²³Na

and ¹H, 4D imaging using continuously oscillating gradients, Star-Lack *et al.*, **124**, 420

multiple-quantum-filtered NMR

- magnetic field inhomogeneity effect on T_2 of quadrupolar nuclei measured by, Eliav *et al.*, **128**, 82
- in monitoring of intracellular Na in isolated perfused rat heart in absence of chemical-shift reagent, Tauskela *et al.*, **127**, 115
- multiple-quantum MAS NMR for spin- $\frac{3}{2}$ nuclei, developments, Duer and Stourton, **124**, 189
- simultaneous acquisition of quadrupolar order and double-quantum signals, Jung, Cannon, and Katz, **129**, 130
- spectrum of maize root segments: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17
- $T_{\rm 2}$ and content ratio, measurement in phantoms simulating biological systems by use of multiple-quantum filtering, Jung, Cannon, and Katz, **124**, 393

Multidimensional spectroscopy

and ¹³C, labeled proteins

2D multiple quantum MAS NMR acquisition of whole echo, Brown and Wimperis, **124**, 279

comparison of methods, Brown and Wimperis, **128**, 42

Negative edge enhancement

in NMR imaging with diffusion at permeable susceptibility interfaces, Nestle, Rydyger, and Kimmich, **125**, 355

Nerves

sciatic, compartments in, discrimination by ²H double-quantum-filtered NMR, Shinar, Seo, and Navon, **129**, 98

Nickel monoxide

- NiO(111), and Au(111), adsorption of di-*tert*-butyl nitroxide, ESR and TPD studies: evidence for long-range interactions, Katter *et al.*, **126**, 242
- Nitrogen shieldings
 - in models for solid Si_3N_4 and $C_3N_4,$ second-nearest-neighbor effects, Tossell, $127,\,49$
 - 1,2,4,5-tetrazine, hydrogen bonding and solvent polarity effects, Witanowski et al., 124, 127
- Nitroxide radical

rats treated with, *in vivo* longitudinally detected ESR measurements at microwave regions of 300, 700, and 900 MHz, Yokoyama *et al.*, **129**, 201

- Nitroxide spin probe
- internal dynamics in glassy polymer matrix detected by, double-modulation ESR study, Rakvin and Veksli, **125**, 28
- Noble gases
- as relaxation agents, Hitchens and Bryant, 124, 227

NOE (see Nuclear Overhauser effect)

NOESY (see Nuclear Overhauser effect spectroscopy)

Noise

- chemical, in biomedical magnetic resonance spectroscopy, application of wavelet-transform analysis, Serrai *et al.*, **124**, 20
- detection-estimation scheme for, applications to delayed acquisition data, Lin et al., 128, 30
- method for estimating parameters of noisy MRS signals: AMARES, Vanhamme, van den Boogaart, and Van Huffel, **129**, 35

spectral, uncertainties in relaxation analysis of 2D NOE arising from, investigation, Likić and Prendergast, **124**, 200

Nonlinear stimulated echoes

experiments demonstrating, Ardelean *et al.*, **124**, 506 multiple, Ardelean *et al.*, **127**, 217

NQR (*see* Nuclear-quadrupole resonance)

- Nuclear Overhauser effect
 - net, in NMR, effect of spin diffusion and cross correlation, Madhu and Kumar, **127**, 168
- observation from regions of spectral overlap: NOE-enhanced *J*-resolved difference spectroscopy, Grode and Mowery, **126**, 142

Nuclear Overhauser effect spectroscopy

- back calculation of data with RELAX program based on complete-relaxation-matrix formalism, Görler and Kalbitzer, **124**, 177
- ¹H}⁻¹³C, 1,3,7,10-tetramethylbenzo[c]cinnoline: internal rotation of mutually interacting methyl groups, Wimmer and Müller, **129**, 1
- -HQQC, constant-time experiment for protein NMR, Shaw et al., **124**, 479
- identification of ribose-base sequential NOEs according to base types in uniformly ¹³C-labeled RNAs, Ramachandran *et al.*, **124,** 210
- method for simulation of spectra, Allard, Helgstrand, and Härd, **129**, 19 1D, using pulsed-field gradients, Stott *et al.*, **125**, 302
- 1D gradient-enhanced, and 1D ge-TOCSY, proton chemical-shift correlation with full sensitivity using, Uhrín and Barlow, **126**, 248
- relative motion of indole ring of tryptophans in gramicidin analogs incorporated into SDS micelles, Hinton and Washburn-McCain, **125**, 259
- and ROESY and TOCSY, pure absorption 2D spectra, quick recording using pulsed field gradients, Parella, Sánchez-Ferrando, and Virgili, 125, 145

2D, relaxation analysis, investigation of uncertainties arising from spectral noise, Likić and Prendergast, **124**, 200

Nuclear-Overhauser-enhanced J-resolved difference spectroscopy

- method for observation of NOE from regions of spectral overlap, Grode and Mowery, **126**, 142
- Nuclear quadrupole moment
- interaction with electric-field gradient, magnetic field dependence, Filsinger et al., 125, 280
- Nuclear-quadrupole resonance
- 2D rotating-frame imaging, Robert and Pusiol, 127, 109
- Nuclear spin

 –electron spin cross-correlation effects, on multiplet splittings in paramagnetic proteins, Ghose and Prestegard, 128, 138

- Nuclei (see also Quadrupolar nuclei)
 - with arbitrary spin, electron-spin-echo envelope modulation arising from hyperfine coupling to, Ponti, **127**, 87
 - equivalent, rotating solids with several groups of, time-reverse ODESSA experiment, Reichert *et al.*, **125**, 245
 - hyperpolarized, ¹²⁹Xe, *T*₁ and diffusion measurements using MR signals from, Patyal *et al.*, **126**, 58
 - laser-polarized, ¹²⁹Xe, NMR in blood foam, Tseng et al., 126, 79
 - sensitive, accelerated relaxation for enhancement of signal-to-noise with time, Homer, Perry, and Palfreyman, **125**, 20
 - spin-¹/₂ and quadrupolar, high-resolution heteronuclear correlation using multiple-quantum MAS, Wang, De Paul, and Bull, **125**, 364
 - spin greater than $\frac{1}{2}$, magnetic equivalence in presence of relaxation, Szymański, **127**, 199
 - spin- $\frac{3}{2}$, developments in multiple-quantum MAS NMR for, Duer and Stourton, **124**, 189

Nucleic acids

NMR and X-ray structures, conformational database potential for refinement of, improvements and extensions, Kuszewski, Gronenborn, and Clore, **125**, 171

0

 ^{17}O

- chemical shifts in amides: quantitative linear solvation shift relationships, Díez *et al.*, **124**, 8
- chemical shifts in carbonyl group, comparison of experimental and ab initio values, Jackowski, Jaszuński, and Makulski, **127**, 139
- ¹⁷O-decoupled spectroscopy
- proton NMR, and imaging, in tissue model, Stolpen, Reddy, and Leigh, 125, 1
- ODESSA (see One-dimensional exchange spectroscopy by sideband alternation)

Off-magic-angle spinning

- fast-sample-rotation, isolated ¹⁵N-¹⁵N spin pair in 5-methyl-2-diazobenzenesulfonic acid hydrochloride, Challoner, Harris, and Tossell, **126**, 1
- Off-resonance effects
 - associated with CPMG pulse sequence, affecting motional analysis of biomolecules, Ross, Czisch, and King, **124**, 355
 - systematic errors associated with off-resonance oscillations in T_2 measurements, removal, Czisch, King, and Ross, **126**, 154
- Off-resonance irradiation effect

in steady-state NMR saturation transfer, Baguet and Roby, 128, 149

- Off-resonance ROESY (see Rotating-frame Overhauser effect spectroscopy, off-resonance)
- Oligomerization

proteins in solution, determination from pulsed-field-gradient self-diffusion coefficient measurements, comparison of experimental, theoretical, and hard-sphere approximated values, Krishnan, **124**, 468

One-dimensional exchange spectroscopy by sideband alternation time-reverse, for rotating solids with several groups of equivalent nuclei, Reichert *et al.*, **125**, 245

- gradient-based multiplicity-edited HSQC experiments, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274
- gradient-enhanced proton chemical-shift correlation with full sensitivity, Uhrín and Barlow, **126**, 248
- NOE experiments using pulsed-field gradients, Stott et al., 125, 302
- selective ¹H-¹³C polarization-transfer schemes, sensitivity improvements, Parella, Sánchez-Ferrando, and Virgili, **126**, 278
- singly and doubly selective, application of excitation sculpting to construction of, Gradwell, Kogelberg, and Frenkiel, **124**, 267
- time-of-flight: *in vitro* validation of rapid MR measurement of wave velocity, Kraft *et al.*, **126**, 103
- Optical detection of nuclear magnetic resonances
- GaAs/AlGaAs heterostructures, lineshapes obtained, Schreiner *et al.*, **124**, 80
- Optimization
 - experiment design, and error estimation, general approach applied to multislice imaging of T_1 in human brain at 4.1 T, Mason, Chu, and Hetherington, **126**, 18
 - sampling strategies for measurement of relaxation times in proteins, Jones, **126**, 283
 - selective adiabatic inversion pulses: design using adiabatic condition, Rosenfeld, Panfil, and Zur, **129**, 115
 - selective adiabatic pulses, Rosenfeld, Panfil, and Zur, 126, 221
 - stochastic, compact MRI magnet design by, Crozier and Doddrell, **127**, 233
 - Water-PRESS pulse sequence, and integration into pulse sequences for study of biological macromolecules, Price, Hayamizu, and Arata, **126**, 256
- Organotin fluorides
- solid, multinuclear experiments on, Cherryman and Harris, **128**, 21 Orientational anisotropy
- determination in glassy solids by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217
- Orientational information
- in solids, from REDOR sidebands, Goetz and Schaefer, **129**, 222 Oscillations
- dipolar, in cross-polarized peptide samples in oriented lipid bilayers, Tian and Cross, **125**, 220
- off-resonance, associated systematic errors in T_2 measurements, removal, Czisch, King, and Ross, **126**, 154

Out-and-back experiments

triple-resonance, resolution enhancement applied to HCACO sequence, Baur and Kessler, **126**, 270

Overlap

- partial, 2D spectra with, measurement of relaxation rates from, Mishra et al., **125**, 358
- spectral, regions of, observation of NOE: NOE-enhanced *J*-resolved difference spectroscopy, Grode and Mowery, **126**, 142

Ovotransferrin

soft-pulsed ²⁷Al quadrupolar central transition NMR studies, Aramini, Germann, and Vogel, **129**, 111

Oximetry

dynamic nuclear polarization imaging in very low magnetic fields as noninvasive technique for, Guiberteau and Grucker, **124**, 263

Ρ

³¹P

- chemical-shift-tensor information, retrieval for dihydrogen phosphates in presence of homonuclear ³¹P–³¹P dipolar coupling, Lagier and Olivieri, **126**, 138
- elucidation of dipolar coupling networks under magic-angle spinning, Geen et al., **125**, 224
- MRS time-domain data, automated analysis, use of continuous regularization in, Totz et al., **124**, 400
- NMR spectra in plant tissues: use of bulk magnetic susceptibility to resolve internal and external signals, Shachar-Hill *et al.*, **127**, 17
- phase-cycling schemes for multiple π-pulse sequences, comparative studies, Igumenova, Mitchell, and Evans, **127**, 144
- spinning sidebands in slow-MAS NMR spectra arising from tightly *J*coupled spin pairs, Wu *et al.*, **124**, 366

Paint films

- stray-field imaging using surface coil, Glover, McDonald, and Newling, **126**, 207
- Paraelectric phase
 - KH₂AsO₄, AsO₄⁻ spin probe in, ESR study of electron–nuclear dipolar relaxation, Rakvin and Merunka, **126**, 87
- Paraffin
 - amorphous polymer matrices detected by nitroxide spin probe, internal dynamics in, double-modulation ESR study, Rakvin and Veksli, **125**, 28

Parahydrogen

solid, theory of multiple NMR spin echoes of HD impurities in, Kisvarsanyi and Sullivan, **127**, 192

Paramagnetic center

unusual, in X-irradiated zircon at 10 K, X-band EPR study, Claridge, Sutton, and Tennant, **125**, 107

Paramagnetic proteins

multiplet splittings in, electron spin-nuclear spin cross-correlation effects on, Ghose and Prestegard, **128**, 138

Peptides

- antibiotic, degree of coupled isotopic enrichment of different positions in, NMR measurement, Miller, Egan, and Townsend, **125**, 120
- on beads, 2D NMR spectroscopy, Jelinek et al., 125, 185
- cross-polarized samples in oriented lipid bilayers, dipolar oscillations in, Tian and Cross, **125**, 220
- -membrane interactions, solid-state NMR analyses, preparation of oriented lipid bilayer on ultrathin polymers for, Augé et al., 124, 455
- selectively ${}^{13}C^{\alpha}$ -labeled, selective transient heteronuclear cross relaxation in, Allard, Jarvet, and Gräslund, **124**, 97
- torsion angle determination, application of coupling amplification in 2D MAS NMR, Hong *et al.*, **129**, 85

Perfusion

- and ischemia, normothermic, continuous monitoring of intracellular volumes in isolated rat heart during, Askenasy and Navon, **124**, 42
- measurement by FAWSETS: flow-driven arterial water stimulation with elimination of tissue signal, Marro, **124**, 240

Perturbations

- RF, sample-induced, in high-field high-resolution NMR spectroscopy, Crozier et al., 126, 39
- PFG (see Pulsed-field gradients)

Phantoms

- semisolid tissue, ¹⁷O-decoupled proton MR spectroscopy and imaging in, Stolpen, Reddy, and Leigh, **125**, 1
- simulating biological systems, measurement of 23 Na T_2 and content ratio by use of multiple-quantum filtering, Jung, Cannon, and Katz, **124**, 393
- and tissues, diffusion measurement using SLIM localization, Yang et al., **129**, 161

Phase correction

One-dimensional spectroscopy

ADRF differential cross polarization spectroscopy of synthetic calcium phosphates and bone mineral, Ramanathan and Ackerman, **127**, 26

signal perturbed by eddy currents, using continuous wavelet transform, Barache, Antoine, and Dereppe, **128**, 1

246

Phase cycling

- algorithm, for reducing sidebands in adiabatic decoupling, Skinner and Bendall, **124**, 474
- schemes, for multiple π -pulse sequences, comparative studies, Igumenova, Mitchell, and Evans, **127**, 144

Phase distortion

broadband adiabatic refocusing without, Hwang, van Zijl, and Garwood, **124**, 250

Phases

- arbitrary, biselective and independent rotations with, for I and I{S} spin systems, novel pulse sequence element for, Briand and Sørensen, **125**, 202
- in NMR, signs of, Levitt, 126, 164
- time-domain quantitation by wavelet-transform analysis, Serrai et al., **124,** 20

and real-time response, demonstration of validity of ESR-STM results, Manassen, **126**, 133

pH titration

carboxylate groups in uniformly ¹⁵N/¹³C-labeled proteins, 2D NMR experiments H(C)CO₂ and H<u>CCO₂</u> for, Pellecchia *et al.*, **124**, 274

Planar coupling Hamiltonian

versus isotropic mixing Hamiltonian, coherence-transfer calculation under, and application to heteronuclear *J* cross-polarization experiments in solution-state NMR spectroscopy, Krishnan and Rance, **124**, 205

Plants

- Ancistrocladus heyneanus, metabolites in, radial spectroscopic imaging, Meininger et al., 125, 325
- tissues, internal and external signals in NMR spectra, use of bulk magnetic susceptibility to resolve, Shachar-Hill *et al.*, **127**, 17

Polarizations

- large thermal spin, pulsed ENDOR spectroscopy at, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199
- Polarization transfer
- broadband, under MAS, application to total through-space-correlation NMR spectroscopy, Baldus and Meier, **128**, 172
- selective ¹H-¹³C 1D, sensitivity improvements, Parella, Sánchez-Ferrando, and Virgili, **126**, 278
- selective homonuclear, in tilted rotating frame under MAS in solids, Takegoshi, Nomura, and Terao, **127**, 206

Polybutadiene

amorphous polymer matrices detected by nitroxide spin probe, internal dynamics in, double-modulation ESR study, Rakvin and Veksli, **125**, 28

amorphous polymer matrices detected by nitroxide spin probe, internal dynamics in, double-modulation ESR study, Rakvin and Veksli, **125**, 28

glassy, detected by nitroxide spin probe, internal dynamics in, doublemodulation ESR study, Rakvin and Veksli, **125**, 28

Polymers

- solution, convectional flow in capillary, pulsed-gradient spin-echo NMR measurements, Manz, Seymour, and Callaghan, **125**, 153
- ultrathin, preparation of oriented lipid bilayer on, for solid-state NMR analyses of peptide-membrane interactions, Augé *et al.*, **124**, 455 Poly(methyl methacrylate)
 - amorphous polymer matrices detected by nitroxide spin probe, internal dynamics in, double-modulation ESR study, Rakvin and Veksli, **125**, 28

Polypeptides conformational equilibria

- determination of ${}^{3}J_{\rm HC}$ coupling constants in antamanide by 2D NMR multiplet simulation, Schmidt, **124**, 298
- dihedral-angle distribution in antamanide based on three-bond coupling information, Schmidt, **124**, 310

Polystyrene

- ¹³C CPMAS measurements under high gas pressures, Miyoshi, Takegoshi, and Terao, **125**, 383
- Pore
- cylindrical, diffusive diffraction in, observations by pulsed-field-gradient NMR, Gibbs, **124**, 223

Porous media

fracture characterization with NMR spectroscopic techniques, Chang *et al.*, **126**, 213

pulsed-field gradient stimulated-echo diffusion measurements

ethane in saturated H-ZSM5 zeolite, Sørland, Hafskjold, and, Herstad, 124, 172

short-time, Sørland, 126, 146

- Post-acquisition methods
- solvent suppression, by singular-value decomposition, Zhu, Smith, and Hua, **124**, 286
- Potassium chloride
- host lattice, ¹³C EPR hyperfine interaction in complex [Rh(CN)₆]⁴⁻ in, Vugman, Giannoni, and Coelho Neto, **124**, 352
- Powder averaging
 - efficient, in solid-state NMR, REPULSION approach, Bak and Nielsen, 125, 132

Preservation of equivalent pathways

sensitivity improvement

- gradient-based 1D and 2D multiplicity-edited HSQC experiments, Parella, Sánchez-Ferrando, and Virgili, **126**, 274
- selective ¹H-¹³C polarization-transfer schemes, Parella, Sánchez-Ferrando, and Virgili, **126**, 278

Pressure

- normal, and room temperature, mechanically detected magnetic resonance at, Schaff and Veeman, **126**, 200
- Progressive saturation experiment
 - STEAM, T_1 measurement in, effect of long echo times, Knight-Scott and Li, **126**, 266
- Projection reconstruction
 - spectroscopic imaging, for B_0 field plotting and shimming without pulsed gradients, Gregory, **129**, 173

Propellants

- rocket, solid, imaging at 14.1 T, Maas, Merwin, and Cory, **129**, 105 Proteins
 - ¹³C, ¹⁵N-labeled, relaxation mechanisms for backbone carbonyl carbons in, Allard and Härd, **126**, 48
 - ¹³C-labeled, in H₂O, doubly sensitivity-enhanced 3D HCCH-TOCSY using heteronuclear cross polarization and pulsed-field gradients, Wijmenga, Steensma, and van Mierlo, **124**, 459
 - ${}^{13}C/{}^{15}N$ -labeled, ${}^{15}N(i+1)$, ${}^{13}C\alpha(i)$, and ${}^{1}H\alpha(i)$ backbone resonances in, correlation by (CO)N(CO)CAH experiment, Dijkstra *et al.*, **125**, 149
 - deuterated, sequential amide protons and nitrogens-15 in, triple-resonance 4D correlation, HN(CA)NH pulse scheme for, Ikegami *et al.*, **124**, 214
 - heteronuclear NMR assignments using mean-field simulated annealing, Buchler et al., 125, 34
 - hydrogen bonds in, solution NMR characterization by indirect measurement of deuterium quadrupole couplings, LiWang and Bax, **127**, 54
 - measurement of relaxation times, optimal sampling strategies for, Jones, **126**, 283
 - ¹⁵N-labeled, amide proton chemical-shift anisotropy determination using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, Tessari *et al.*, **127**, 128

Phase-sensitive detection

Polyisobutylene

Polymer matrix

- NMR spectroscopy, constant-time HQQC experiment for, Shaw *et al.*, **124**, 479
- NMR and X-ray structures, conformational database potential for refinement of, improvements and extensions, Kuszewski, Gronenborn, and Clore, **125**, 171
- oligomeric state in solution, determination from pulsed-field-gradient self-diffusion coefficient measurements, comparison of experimental, theoretical, and hard-sphere approximated values, Krishnan, **124**, 468
- paramagnetic, multiplet splittings in, electron spin-nuclear spin crosscorrelation effects on, Ghose and Prestegard, **128**, 138
- side-chain amide protons in, stereospecific assignment with $H_2NCO-E.COSY$, Löhr and Rüterjans, **124**, 255
- side-chain interactions, applicability of influence of scalar-coupled deuterium on ¹⁵N relaxation as probe, Boyd *et al.*, **124**, 61
- uniformly ¹⁵N/¹³C-labeled, assignment and pH titration of carboxylate groups in, 2D NMR experiments H(C)CO₂ and H<u>CCO₂</u> for, Pellecchia *et al.*, **124**, 274
- uniformly ¹⁵N-labeled, ¹H $T_{1\rho}$ measurement with heteronuclear 2D spectroscopy, Almeida and Opella, **124**, 509
- Proton chemical-shift anisotropy
- amide, determination in ¹⁵N-labeled proteins using ¹H CSA/¹⁵N-¹H dipolar and ¹⁵N CSA/¹⁵N-¹H dipolar cross-correlation rates, Tessari *et al.*, **127**, 128
- effect on MAS spectra of hydrate crystals, Tekely, **127**, 238 Proton chemical-shift correlation
- gradient-enhanced 1D, with full sensitivity, Uhrín and Barlow, **126**, 248 Pulsed electron-nuclear double resonance
- at large thermal spin polarizations, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199
- Pulsed electron paramagnetic resonance
- with field cycling and bridged loop-gap resonator made by chemical deposition of silver, Sturm, Lötz, and Voitländer, **127**, 105
- species selection in divalent rhodium hexacyanide complex using, Coelho Neto and Vugman, **125**, 242
- transmission-line resonator for, Koptioug, Reijerse, and Klaassen, **125**, 369
- Pulsed-field gradients
- based 1D and 2D multiplicity-edited HSQC experiments, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274
- based velocimetry methods, strategies for NMR rheometry by, Gibbs *et al.*, **125**, 43
- *B*₀ field plotting and shimming without, projection-reconstruction spectroscopic imaging for, Gregory, **129**, 173
- diffusion experiments, effect of nonconstant magnetic-field gradient, Brownian-dynamics computer simulation study, Håkansson *et al.*, **124**, 343
- diffusive diffraction in cylindrical pore, Gibbs, 124, 223
- double-quantum experiments recorded with only *z* gradients, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149
- enhanced double-quantum-filtered COSY pure absorption spectra, artifact-free, including gradient pulse in evolution period, Ancian *et al.*, **125**, 348
- enhanced 1D proton chemical-shift correlation with full sensitivity, Uhrín and Barlow, **126**, 248
- enhanced 1D and 2D HMQC, optimal detection of weak ${}^{n}J({}^{1}H-{}^{119}Sn)$ couplings by, application to tin derivative of erythromycin A, Martins *et al.*, **124**, 218
- and heteronuclear cross polarization, in doubly sensitivity-enhanced 3D HCCH–TOCSY of ¹³C-labeled in H₂O, Wijmenga, Steensma, and van Mierlo, **124**, 459
- 1D NOE experiments using, Stott et al., 125, 302
- quick recording of pure absorption 2D TOCSY, ROESY, and NOESY spectra using, Parella, Sánchez-Ferrando, and Virgili, **125**, 145

- self-diffusion coeficient measured using, in determination of protein oligomeric state in solution, comparison of experimental, theoretical, and hard-sphere approximated values, Krishnan, **124**, 468
- Pulsed-field-gradient stimulated echo
 - diffusion measurements
 - heterogeneous media, Sørland, Hafskjold, and, Herstad, 124, 172

short-time, Sørland, 126, 146

- Pulsed-gradient spin-echo method
 - matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms, Callaghan, **129**, 74
 - NMR measurements of convection in capillary, Manz, Seymour, and Callaghan, 125, 153
- Pulses

adiabatic (see Adiabatic pulses)

- amplitude-modulated decoupling, in liquid-state NMR, Geen and Böhlen, **125**, 376
- arbitrary N, spin echoes after, Kim and Lee, 125, 114
- selective adiabatic, optimization, Rosenfeld, Panfil, and Zur, 126, 221
- selective adiabatic inversion, design using adiabatic condition, Rosenfeld, Panfil, and Zur, **129**, 115
- soft, in ²⁷Al quadrupolar central transition NMR studies of ovotransferrin, Aramini, Germann, and Vogel, **129**, 111
- spin-lock, added to MARF imaging sequence, slow dynamics mapping of large-linewidth solids by, De Luca *et al.*, **126**, 159

Pulse scheme

- HN(CA)NH, for triple-resonance 4D correlation of sequential amide protons and nitrogens-15 in deutrated proteins, Ikegami *et al.*, **124**, 214 Pulse sequences
 - broadband polarization transfer under MAS, application to total throughspace-correlation spectroscopy, Baldus and Meier, **128**, 172
 - CPMG (see Carr-Purcell-Meiboom-Gill)
 - for flow evaluation, based on self-refocused RF and interleaved spiral readout, Takahashi, Li, and Stødkilde-jørgensen, **126**, 127
 - kin HEHAHA: heteronuclear Hartmann-Hahn transfer with different bandwidths for spins I and S, Carlomagno, Luy, and Glaser, 126, 110
 - multiple π , phase-cycling schemes for, comparative studies, Igumenova, Mitchell, and Evans, **127**, 144
 - novel element, for biselective and independent rotations with arbitrary flip angles and phases for I and I{S} spin systems, Briand and Sørensen, **125**, 202
 - spin lock, spin $\frac{7}{2}$ excited by, detection of double- and quadruple-quantum coherences for, Ageev, Mann, and Sanctuary, **128**, 12
 - stripe-COSY and superstripe-COSY, combined with selective deuteration strategy, improved measurement of ¹H-¹H coupling constants via, Yang *et al.*, **129**, 212

3D MAXY-HMQC, Liu et al., 129, 67

- Water-PRESS, optimization, and integration into pulse sequences for study of biological macromolecules, Price, Hayamizu, and Arata, 126, 256
- Pure-phase spectroscopy
 - multidimensional, by reference-frequency shift, Venkata Raman and Chandrakumar, **125**, 188
 - pure-phase homo- and heteronuclear J-spectra with tilted cross peaks for determination of coupling constants, Koźmiński et al., **125**, 193

Q

Quadrupolar nuclei

- multiple-quantum MAS NMR spectra, indirect spin-spin coupling in, Wu et al., 124, 237
- quadrupolar relaxation of spin 3 in intermediate $\omega_0 \tau_c$ regime, Baram and Bendel, **129**, 10
- and spin-¹/₂ nuclei, high-resolution heteronuclear correlation using multiple-quantum MAS, Wang, De Paul, and Bull, **125**, 364

- T_2 , magnetic field inhomogeneity effect measured by multiple-quantumfiltered NMR. Eliav et al., 128, 82
- 2D multiple quantum MAS NMR acquisition of whole echo, Brown and Wimperis, 124, 279 comparison of methods, Brown and Wimperis, 128, 42

Ouadrupole couplings

- deuterium, solution NMR characterization of hydrogen bonds in protein by indirect measurement of, LiWang and Bax, 127, 54 magnetic field dependence, Filsinger et al., 125, 280
- residual, and biexponential relaxation, ²³Na, in simultaneous acquisition and separation of quadrupolar and double-quantum signals, Jung, Cannon, and Katz, 129, 130

Ouantum treatment

of intermolecular multiple-quantum coherences with intramolecular Jcoupling in solution NMR, Ahn, Warren, and Lee, 128, 114

Quartz crystal temperature sensor for MAS NMR, Simon, 128, 194

R

Radial spectroscopic imaging

- suitable for plants with cylindrical stem symmetry, Meininger et al., 125, 325
- Radiation damping
- intensity jumping and beating in inversion-recovery experiments of water due to, Chen, Mao, and Ye, 124, 490
- suppression in PFG DQ experiments recorded with only z gradients, Dalvit and Böhlen, 126, 149

Radiation dosimetry

- by localized magnetic resonance spectroscopy, Roser, 124, 271
- Radicals
- methyl-rotor electron-spin dynamics in Smoluchowski drift-diffusional framework, Sørnes and Benetis, 125, 52

Radiofrequency

phases and frequencies in NMR, signs of, Levitt, 126, 164

Radiofrequency field

calculation in three dimensions: effects of shield geometry on field strength and homogeneity in birdcage coil, Collins et al., 125, 233 combination of slow and fast modulation for improved cross polarization

in solid-state MAS NMR, Hediger et al., 125, 291

- distribution in cardiac MRI, simulation as function of static magnetic field, Singerman et al., 125, 72
- sample-induced perturbations, in high-field high-resolution NMR spectroscopy, Crozier et al., 126, 39
- self-refocused pulse, and interleaved spiral readout, pulse sequence for flow evaluation based on, Takahashi, Li, and Stødkilde-jørgensen, **126,** 127
- transverse, for MRI imaging, solenoid-like coil producing, Jeong et al., 127, 73
- Radiofrequency field gradients
 - in excitation sculpting, with application to 2D HSQC, Heikkinen, Rahkamaa, and Kilpeläinen, 127, 80
 - in modification of BIRD/TANGO sequences to eliminate uncoupled magnetization, Sodickson and Cory, 125, 340

Radiofrequency pulses

- selective adiabatic, optimization, Rosenfeld, Panfil, and Zur, 126, 221 selective adiabatic inversion, design using adiabatic condition, Rosenfeld, Panfil, and Zur, 129, 115
- ⁸⁷Rb
 - 2D multiple quantum MAS NMR, comparison of methods, Brown and Wimperis, 128, 42

Real-time response

and phase-sensitive detection, demonstration of validity of ESR-STM results, Manassen, 126, 133

REDOR (see Rotational-echo double resonance)

Reference-frequency shift

- pure-phase multidimensional spectroscopy by, Venkata Raman and Chandrakumar, 125, 188
- Refocusing
 - broadband adiabatic, without phase distortion, Hwang, van Zijl, and Garwood. 124, 250

RELAX

program based on complete-relaxation-matrix formalism, back calculation of NOESY spectra with, Görler and Kalbitzer, 124, 177

Relaxation

- accelerated, of sensitive nucleus, for enhancement of signal-to-noise with time, Homer, Perry, and Palfreyman, 125, 20
- backbone carbonyl carbons in 13C, 15N-labeled protein, mechanisms, Allard and Härd. 126, 48
- biexponential, and residual quadrupolar coupling, ²³Na, in simultaneous acquisition and separation of quadrupolar and double-quantum signals, Jung, Cannon, and Katz, 129, 130
- electron-nuclear dipolar, for AsO_4^{4-} spin probe in paraelectric phase of KH₂AsO₄, ESR study, Rakvin and Merunka, 126, 87
- homonuclear cross-correlation cross-relaxation rates along effective field, application to dipole-dipole cross-correlation, Desvaux, 127, 1
- laser-polarized ¹²⁹Xe in blood foam, Tseng et al., 126, 79
- ¹⁵N data analysis, applicability of model-free approach, Korzhnev, Orekhov, and Arseniev, 127, 184
- NMR experimental-parameter selection based on, graphical approach, Early, Donahue, and Williams, 125, 163
- ¹⁵N nucleus, effect of scalar-coupled deuterium and use as probe for sidechain interactions in proteins, Boyd et al., 124, 61
- nuclei of spin greater than $\frac{1}{2}$ in presence of, magnetic equivalence, Szymański, 127, 199
- quadrupolar, of spin 3 in intermediate $\omega_0 \tau_c$ regime, Baram and Bendel, 129, 10

spin, induced by chemical shielding anisotropy, evaluation: importance of antisymmetric component, Kowalewski and Werbelow, 128, 144 spin-lattice

- and diffusion, measurements using MR signals from laser-hyperpolarized ¹²⁹Xe nuclei, Patyal et al., 126, 58
- dynamic measurement using snapshot-FLASH MRI, Jivan et al., 127, 65

 ${}^{1}H$

- distribution in lung, and wet/dry ratio, Estilaei et al., 124, 410
- relative motion of indole ring of tryptophans in gramicidin analogs incorporated into SDS micelles, Hinton and Washburn-McCain, 125, 259
- T_{1o} , measurement in uniformly ¹⁵N-labeled protein with heteronuclear 2D spectroscopy, Almeida and Opella, 124, 509
- in human brain at 4.1 T, multislice imaging, application of general approach to error estimation and optimized experiment design, Mason, Chu, and Hetherington, 126, 18
- measurement in STEAM progressive saturation experiment, effect of long echo times, Knight-Scott and Li, 126, 266
- 1,3,7,10-tetramethylbenzo[c]cinnoline: ¹³C NMR study of internal rotation of mutually interacting methyl groups, Wimmer amd Müller, 129, 1
- T_{1o} filter MARF imaging of large-linewidth solids, De Luca et al., 126, 159

spin-spin

- apparent, time-domain quantitation by wavelet-transform analysis, Serrai et al., 124, 20
- distributions, lineshapes, and weighting techniques, for characterization of fluid distributions in fractured systems, Chang et al., 126, 213
- fat and water protons, and relative concentrations of protons, singlescan imaging technique for measurement of, Ma et al., 125, 92

distribution in lung, and wet/dry ratio, Estilaei *et al.*, **124**, 410 relative motion of indole ring of tryptophans in gramicidin analogs incorporated into SDS micelles, Hinton and Washburn-McCain, **125**, 259

- ²³Na, and content ratio, measurement in phantoms simulating biological systems by use of multiple-quantum filtering, Jung, Cannon, and Katz, **124**, 393
- quadrupolar nuclei, magnetic field inhomogeneity effect measured by multiple-quantum-filtered NMR, Eliav et al., **128**, 82
- splittings, high-resolution proton spectra without, methods for obtaining: proton chemical-shift spectra, Simova, Sengstschmid, and Freeman, **124**, 104
- systematic errors associated with off-resonance oscillations, removal, Czisch, King, and Ross, **126**, 154
- 2D NOE spectra analysis, uncertainties arising from spectral noise, investigation, Likić and Prendergast, **124**, 200
- Relaxation agents
 - noble-gas, Hitchens and Bryant, 124, 227
- Relaxation rates
 - ¹H longitudinal modes, measurement, Norwood, **125**, 265
 - measurement from 2D spectra with partial overlap, Mishra et al., 125, 358
- Relaxation times
 - in proteins, optimal sampling strategies for measurement, Jones, **126**, 283
- REPULSION
 - approach to efficient powder averaging in solid-state NMR, Bak and Nielsen, **125**, 132

Resolution

- enhancement, in out-and-back triple-resonance experiments, applied to HCACO sequence, Baur and Kessler, **126**, 270
- in high-field EPR spectroscopy of undiluted Cr(V) salts, $S = \frac{1}{2}$, relationship to exchange effects and *g*-strain broadening, Cage *et al.*, **124**, 495
- importing into evolution dimension of multidimensional NMR spectrum, McGeorge *et al.*, **129**, 134

Resonances

backbone, ¹⁵N(*i*+1), ¹³C α (*i*), and ¹H α (*i*), in ¹³C/¹⁵N-labeled proteins, correlation by (CO)N(CO)CAH experiment, Dijkstra *et al.*, **125**, 149

Resonant frequency

in vivo ESR: longitudinally detected ESR measurements at microwave regions of 300, 700, and 900 MHz in rats treated with nitroxide radical, Yokoyama *et al.*, **129**, 201

Resonant modes

birdcage coil, Leifer, 124, 51

Resonator

- bird-cage, mutual inductance in, Tropp, 126, 9
- bridged loop-gap, made by chemical deposition of silver, pulsed EPR with field cycling using, Sturm, Lötz, and Voitländer, **127**, 105
- double-stacked dielectric, for sensitive EPR measurements, Jaworski, Sienkiewicz, and Scholes, **124**, 87
- shielded-loop, planar quadrature coil design using, Stensgaard, **125**, 84 transmission-line, for pulsed EPR, Koptioug, Reijerse, and Klaassen, **125**, 369

Rheometry

- NMR-based, techniques based on MRI velocimetry, Gibbs et al., 125, 43
- Rhodium hexacyanide complex
 - $[Rh(CN)_{6}]^{4-}$
 - ¹³C EPR hyperfine interaction in KCl host lattice, Vugman, Giannoni, and Coelho Neto, **124**, 352
 - divalent, species selection using pulsed EPR, Coelho Neto and Vugman, **125**, 242

Ribose

- ribose-base sequential NOEs, identification according to base types in uniformly ¹³C-labeled RNAs, Ramachandran *et al.*, **124,** 210
- RNA
 - ¹³C-uniformly labeled, base types in, identification of ribose-base sequential NOEs according to, Ramachandran *et al.*, **124**, 210

ROESY (see Rotating-frame Overhauser effect spectroscopy)

Rotating frame

tilted, under MAS in solids, selective homonuclear polarization transfer in, Takegoshi, Nomura, and Terao, **127**, 206

Rotating-frame imaging

- 2D NQR, Robert and Pusiol, 127, 109
- Rotating-frame Overhauser effect spectroscopy
 - coherence transfer distortions, origin of correlation time dependence, Ghose, Evans, and Prestegard, **128**, 207
 - HOHAHA distortions of spectra, selection of spin-lock transmitter position for minimization, Chan et al., **126**, 183
 - method for simulation of spectra, Allard, Helgstrand, and Härd, **129**, 19 off-resonance
 - complete-relaxation-matrix analysis of spectra, for DNA duplex with G-A mismatch in solution, Kuwata *et al.*, **128**, 70
 - method for simulation of spectra, Allard, Helgstrand, and Härd, **129**, 19
 - and TOCSY and NOESY, pure absorption 2D spectra, quick recording using pulsed field gradients, Parella, Sánchez-Ferrando, and Virgili, 125, 145
 - with water flip back, for high-field NMR of biomolecules, Fulton and Ni, **129**, 93

Rotational-echo double resonance

- dephasing, by multiple spins in presence of molecular motion, Goetz and Schaefer, **127**, 147
- sidebands, orientational information in solids from, Goetz and Schaefer, **129**, 222
- Rotational resonance

zero-quantum correlation spectroscopy under conditions of, determination of interatomic distances by, Koons *et al.*, **124**, 499

Rotations

- biselective and independent, with arbitrary flip angles and phases for I and I{S} spin systems, novel pulse sequence element for, Briand and Sørensen, **125**, 202
- internal, mutually interacting methyl groups, ¹³C NMR study, Wimmer amd Müller, **129**, 1

S

- Sample flipping
 - 2D dipolar spectra with, determination of orientational anisotropy in glassy solids by, Utz *et al.*, **128**, 217

Sample length

variable, line-like samples with, analysis of movement along x-axis of double TE_{104} and single TE_{102} rectangular cavity, Mazúr, Morris, and Valko, **129**, 188

Samples

- induction of RF perturbations in high-field high-resolution NMR spectroscopy, Crozier et al., **126**, 39
- NMR, temperature control, thermoelectric cooling for, Gregory, Claridge, and Leonard, **124**, 228
- programmed translation cycles, fresh spins for NMR signal enhancement using, Wu and Johnson, **127**, 225

Sampling

- cyclic, fresh spins for NMR signal enhancement using, Wu and Johnson, **127**, 225
- optimal, for measurement of relaxation times in proteins, Jones, **126**, 283 Sapphire
 - ²⁷Al chemical shielding anisotropy, Vosegaard and Jakobsen, 128, 135

250

Saturation transfer

- steady-state, off-resonance irradiation effect, Baguet and Roby, **128**, 149 Scanning tunneling microscopy
- ESR results, validity, demonstration with real-time response and phasesensitive detection, Manassen, 126, 133

Sciatic nerve

compartments in, discrimination by ²H double-quantum-filtered NMR, Shinar, Seo, and Navon, **129**, 98

Second-nearest-neighbor effects

- on N NMR shieldings in models for solid Si_3N_4 and $\mathrm{C}_3N_4,$ Tossell, 127, 49
- Selective excitation

adiabatic slice-selective, for surface coils, Shen and Rothman, **124**, 72 singly and doubly selective 1D experiments using, application of excitation sculpting to construction of, Gradwell, Kogelberg, and Frenkiel,

124, 267

- Selective homonuclear polarization transfer
- in tilted rotating frame under MAS in solids, Takegoshi, Nomura, and Terao, **127**, 206
- Self-consistent-field calculations
- and off-angle fast-sample-spinning NMR, for diazo systems: studies of isolated ¹⁵N-¹⁵N spin pair, Challoner, Harris, and Tossell, **126**, 1 Self-diffusion coeficient
- pulsed-field-gradient, in determination of protein oligomeric state in solution, comparison of experimental, theoretical, and hard-sphere approximated values, Krishnan, **124**, 468

Sensitive nuclei

accelerated relaxation for enhancement of signal-to-noise with time, Homer, Perry, and Palfreyman, **125**, 20

Sensitivity

- doubly sensitivity enhanced 3D HCCH–TOCSY of ¹³C-labeled proteins in H₂O using heteronuclear cross polarization and pulsed-field gradients, Wijmenga, Steensma, and van Mierlo, **124**, 459
- fast chemical shift imaging methods, comparison, Pohmann, von Kienlin, and Haase, 129, 145
- full, gradient-enhanced 1D proton chemical-shift correlation with, Uhrín and Barlow, **126**, 248

improvement

- in gradient-based 1D and 2D multiplicity-edited HSQC experiments, Parella, Sánchez-Ferrando, and Virgili, **126**, 274
- in selective ¹H-¹³C 1D polarization-transfer schemes, Parella, Sánchez-Ferrando, and Virgili, **126**, 278

Separated-local-field experiment

- high-resolution 3D, with magic-angle turning, Hu et al., **126**, 120 Shield geometry
- effects on B_1 field strength and homogeneity in birdcage coil, calculation method, Collins *et al.*, **125**, 233

Shielding

low-frequency magnetic interference in weak-field MRI by single-layer cylindrical coil, Planinšič, **126**, 30

nitrogen (see Nitrogen shieldings)

Shimming

automated

- for deuterated solvents, using field profiling, Sukumar *et al.*, **125**, 159 with normal spectrometer hardware, practical method for, Barja *et al.*, **125**, 197
- *B*₀ field, without pulsed gradients, projection-reconstruction spectroscopic imaging for, Gregory, **129**, 173

high-resolution MAS probe, Sodickson and Cory, 128, 87

Shims

on-axis, for high-resolution NMR, fast automatic adjustment, Shen and Rothman, **127**, 229

Sidebands

in adiabatic decoupling

coherence sidebands, elimination, Bendall and Skinner, **129**, 30 effect of sweep direction, Kupče, **129**, 219

- reducing, phase-cycling algorithm for, Skinner and Bendall, **124**, 474 dipolar spinning, in MAS proton spectra of hydrate crystals, effect of proton chemical-shift anisotropy, Tekely, **127**, 238
- REDOR, orientational information in solids from, Goetz and Schaefer, 129, 222

spinning, in slow-MAS NMR spectra arising from tightly *J*-coupled spin pairs, Wu *et al.*, **124**, 366

Side chains

interactions in proteins, applicability of influence of scalar-coupled deuterium on ¹⁵N relaxation as probe, Boyd *et al.*, **124**, 61

Signal class recognition

automated, by Bayesian method, use of global symmetries in, Schulte *et al.*, **129**, 165

- Signal enhancement
 - fresh spins for, through programmed sample translation cycles, Wu and Johnson, **127**, 225
- Signal intensity
 - jumping and beating due to radiation damping in inversion-recovery experiments of water, Chen, Mao, and Ye, **124**, 490
- Signal-to-noise ratio

enhancement with time, accelerated relaxation of sensitive nucleus for, Homer, Perry, and Palfreyman, **125**, 20

intrinsic, in cardiac MRI

at 1.5, 3, and 4 T, Wen et al., 125, 65

simulation as function of static magnetic field, Singerman *et al.*, **125**, 72

Signals

- internal and external, in NMR spectra of plant tissues, use of bulk magnetic susceptibility to resolve, Shachar-Hill *et al.*, **127**, 17
- noisy, detection-estimation scheme for, applications to delayed acquisition data, Lin *et al.*, **128**, 30
- tissue, flow-driven arterial water stimulation with elimination of, Marro, **124**, 240
- Sign determination

absolute sign of hyperfine interaction: pulsed ENDOR spectroscopy at large thermal spin polarizations, Bennebroek and Schmidt, **128**, 199

- Signs
 - of frequencies and phases in NMR, evaluation, Levitt, 126, 164
 - small $J({}^{1}\text{H},{}^{13}\text{C})$ coupling constants in linear spin systems, DQ/ZQ NMR experiment for determination of, Otting, **124**, 503
- Silver

chemical deposition, bridged loop-gap resonator made by, pulsed EPR with field cycling using, Sturm, Lötz, and Voitländer, **127**, 105

Simulations

 B_1 field distribution and intrinsic signal-to-noise ratio in cardiac MRI as function of static magnetic field, Singerman *et al.*, **125**, 72

computer

- Brownian-dynamics, in study of influence of nonconstant magneticfield gradient on PFG NMR diffusion experiments, Håkansson *et al.*, **124**, 343
- NOESY, ROESY, and off-resonance ROESY spectra, method for, Allard, Helgstrand, and Härd, **129**, 19

EPR behavior of internal motion of methyl fragment in radicals, using Smoluchowski drift diffusion model, Sørnes and Benetis, **125**, 52 Si₃N₄

- solid, N NMR shieldings in models for, second-nearest-neighbor effects, Tossell, **127**, 49
- SLIM (see Spectral localization by imaging)

Smoluchowski model

drift diffusion, methyl-rotor electron-spin dynamics using, Sørnes and Benetis, 125, 52

¹¹⁹Sn

- and ¹⁹F, solid organotin fluorides, multinuclear experiments, Cherryman and Harris, **128**, 21
- weak "J(¹H-¹¹⁹Sn) couplings, optimal detection by gradient-enhanced 1D and 2D HMQC, application to erythromycin A derivative Ery(OSn(t-Bu)₂)₂O, Martins *et al.*, **124**, 218

Snapshot-FLASH (see Fast low-angle shot, snapshot)

Sodalite

- ⁵⁷Fe-substituted, X-band pulsed ENDOR study: effect of zero-field splitting, Vardi *et al.*, **126**, 229
- Sodium
 - intracellular, in isolated perfused rat heart in absence of chemical-shift reagent, multiple-quantum-filtered ²³Na NMR in monitoring of, Tauskela *et al.*, **127**, 115
- Sodium borocaptate
 - $^{10}\text{B},$ quadrupolar relaxation of spin 3 in intermediate $\omega_0\tau_{\rm c}$ regime, Baram and Bendel, **129,** 10
- Sodium dodecyl sulfate
- micelles, tryptophans in gramicidin analogs incorporated into, relative motion of indole ring, proton T_1 , T_2 , and NOE study, Hinton and Washburn-McCain, **125**, 259
- Sodium nitroprusside
 - ¹⁴N, quadrupole coupling constant, magnetic field dependence, Filsinger *et al.*, **125**, 280
- Soft pulses
- in ²⁷Al quadrupolar central transition NMR studies of ovotransferrin, Aramini, Germann, and Vogel, **129**, 111

Solenoid coil

- producing transverse RF fields for MR imaging, Jeong et al., 127, 73 Solids
 - biological solid-state NMR, phase-cycling schemes for multiple π -pulse sequences in, Igumenova, Mitchell, and Evans, **127**, 144
 - dipolar interactions, far-off-resonance averaging, Chang *et al.*, **124**, 165 glassy, orientational anisotropy determination by 2D dipolar spectra with sample flipping, Utz *et al.*, **128**, 217
 - large-linewidth, slow dynamics mapping by MARF spin-lock filter, De Luca *et al.*, **126**, 159
 - molecular motion in, ²H double-quantum NMR spectroscopy for study of, Duer and Stourton, **129**, 44
 - nuclear-spin propagation, cog-wheel model, Brüschweiler and Ernst, **124**, 122
 - organotin fluorides, multinuclear experiments on, Cherryman and Harris, **128**, 21
 - orientational information from REDOR sidebands, Goetz and Schaefer, **129**, 222
 - para-H₂, theory of multiple NMR spin echoes of HD impurities in, Kisvarsanyi and Sullivan, **127**, 192
 - peptide-membrane interactions, NMR analyses, preparation of oriented lipid bilayer on ultrathin polymers for, Augé *et al.*, **124**, 455
 - powder averaging in magnetic resonance, REPULSION approach, Bak and Nielsen, **125**, 132
 - rigid, assignment of ¹³C NMR spectra by 2D MAS separated-local-field spectroscopy, Pan, **124**, 1
 - rocket propellants, imaging at 14.1 T, Maas, Merwin, and Cory, 129, 105
 - rotating, with several groups of equivalent nuclei, time-reverse ODESSA experiment, Reichert *et al.*, **125**, 245
 - Si_3N_4 and C_3N_4 , N NMR shieldings in models for, second-nearest-neighbor effects, Tossell, **127**, 49
 - spin diffusion and cross-relaxation in, Müller, Zimmermann, and Haeberlen, 126, 66

Solution NMR

characterization of hydrogen bonds in protein by indirect measurement of deuterium quadrupole couplings, LiWang and Bax, **127**, 54 intermolecular multiple-quantum coherences with intramolecular J coupling in, quantum treatment, Ahn, Warren, and Lee, **128**, 114

Solutions

- aqueous, DNA duplex with G-A mismatch in, complete-relaxation-matrix analysis of off-resonance ROESY spectra, Kuwata *et al.*, **128**, 70
- polymer, convectional flow in capillary, pulsed-gradient spin-echo NMR measurements, Manz, Seymour, and Callaghan, **125**, 153
- protein oligomeric state in, determination from pulsed-field-gradient selfdiffusion coefficient measurements, comparison of experimental, theoretical, and hard-sphere approximated values, Krishnan, **124**, 468
- Solution-state studies
 - heteronuclear J cross-polarization, application of calculation of coherence-transfer behavior under planar vs isotropic mixing Hamiltonians, Krishnan and Rance, **124**, 205
- Solvent effects
 - on oxygen-17 chemical shifts in amides: quantitative linear solvation shift relationships, Díez et al., **124**, 8
- Solvent polarity effects
- nitrogen NMR shielding of 1,2,4,5-tetrazine, Witanowski et al., **124**, 127 Solvents
 - deuterated, automated shimming using field profiling, Sukumar et al., 125, 159
 - isotropic and liquid crystalline, ¹³C-{¹H} spectra of 2,2'-difluorobiphenyl in: X part of ABX spin system, Edgar, Emsley, and Furby, **128**, 105
- Solvent suppression
 - post-acquisition, by singular-value decomposition, Zhu, Smith, and Hua, **124**, 286
- Spatial modulation
 - dependence of spin-echo signals on, Jones, Morris, and Waterton, 124, 291

Spectra

- ¹H NMR, homonuclear broadband-decoupled, Zangger and Sterk, **124**, 486
- Spectral line analysis
 - continuous wavelet transform as tool for, and applications, Barache, Antoine, and Dereppe, **128**, 1
- Spectral localization by imaging
 - diffusion measurement in phantoms and tissues using, Yang et al., 129, 161
- Spectrometer
 - normal hardware, practical method for automated shimming with, Barja et al., **125**, 197
- Spin diffusion
 - and cross correlation, effect on net NOE enhancement in NMR, Madhu and Kumar, **127**, 168
 - and cross-relaxation, in solid-state NMR, Müller, Zimmermann, and Haeberlen, **126**, 66
- Spin dynamics
- 1D NOE experiments using pulsed-field gradients, Stott *et al.*, **125**, 302 Spin echo analysis
 - restricted diffusion under generalized gradient waveforms, matrix formalism for, Callaghan, **129**, 74
- Spin echoes
 - after arbitrary N pulses, Kim and Lee, 125, 114
 - intersequence stimulated, generation and elimination in double-quantum filtering, mathematical analysis, Jung and Katz, **124**, 232
 - long echo time effect on T_1 measurement in STEAM progressive saturation experiment, Knight-Scott and Li, **126**, 266
 - multiple NMR, of HD impurities in solid para- H_2 , theory, Kisvarsanyi and Sullivan, **127**, 192
 - nonlinear stimulated (see Nonlinear stimulated echoes)
 - pulsed-gradient (see Pulsed-gradient spin-echo method)

spatial dependence of signals, Jones, Morris, and Waterton, **124**, 291 whole, acquisition, in 2D multiple quantum MAS NMR, Brown and Wimperis, **124**, 279

Spin-lock filter

MARF, slow dynamics mapping of large-linewidth solids by, De Luca et al., 126, 159

Spin-lock sequences

- spin $\frac{7}{2}$ excited by, detection of double- and quadruple-quantum coherences for, Ageev, Mann, and Sanctuary, **128**, 12
- transmitter position selection for minimization of HOHAHA distortions of ROESY spectra, Chan *et al.*, **126**, 183

Spin-³/₂ nuclei

developments in multiple-quantum MAS NMR for, Duer and Stourton, **124**, 189

Spin-¹/₂ nuclei

and quadrupolar nuclei, high-resolution heteronuclear correlation using multiple-quantum MAS, Wang, De Paul, and Bull, **125**, 364

Spin pairs

- ¹⁵N-¹⁵N, isolated, in 5-methyl-2-diazobenzenesulfonic acid hydrochloride, off-angle fast-sample-spinning NMR and self-consistent-field calculations, Challoner, Harris, and Tossell, **126**, 1
- spin-¹/₂, dipolar-coupled homonuclear, 1D and 2D MAS NMR spectra of, Kundla *et al.*, **129**, 53
- tightly J-coupled, slow-MAS NMR spectra arising from, spinning sidebands in, Wu et al., **124**, 366

Spin polarizations

large thermal, pulsed ENDOR spectroscopy at, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199

Spin probes

- AsO₄⁴⁻ as, in paraelectric phase of KH₂AsO₄, electron–nuclear dipolar relaxation, ESR study, Rakvin and Merunka, **126**, 87
- nitroxide, internal dynamics in glassy polymer matrix detected by, double-modulation ESR study, Rakvin and Veksli, **125**, 28

Spin propagation

- in solids, cog-wheel model, Brüschweiler and Ernst, **124**, 122 Spins
- arbitrary, nucleus of, electron-spin-echo envelope modulation arising from hyperfine coupling to, Ponti, **127**, 87
- fresh, for NMR signal enhancement, through programmed sample translation cycles, Wu and Johnson, **127**, 225
- greater than ¹/₂, nuclei with, magnetic equivalence in presence of relaxation, Szymański, **127**, 199
- multiple, in presence of molecular motion, REDOR dephasing by, Goetz and Schaefer, **127**, 147
- $\frac{7}{2}$, excited by spin lock pulse sequences, detection of double- and quadruple-quantum coherences for, Ageev, Mann, and Sanctuary, **128**, 12
- 3, quadrupolar relaxation in intermediate $\omega_0 \tau_c$ regime, Baram and Bendel, 129, 10
- Spin-spin coupling
 - compensation for effects during adiabatic pulses, Kupče and Freeman, 127, 36
 - E.COSY-type measurement of $J_{\rm HH}$ coupling constants, application of spin-state-selective excitation, Meissner, Duus, and Sørensen, **128**, 92
 - heteronuclear coupling constants, determination from E.COSY-type cross peaks, HMQC- and HSQC-based 2D NMR experiments: HECADE, Kożmiński and Nanz, **124**, 383
 - ¹H–¹H coupling constants, improved measurement in DNA via stripe-COSY and superstripe-COSY pulse sequences combined with selective deuteration strategy, Yang *et al.*, **129**, 212

indirect, in multiple-quantum MAS NMR spectra of quadrupolar nuclei, Wu et al., **124**, 237

- intramolecular, in solution NMR, intermolecular multiple-quantum coherences with, quantum treatment, Ahn, Warren, and Lee, **128**, 114
- ³*J*, antamanide, in illustration of derivation of dihedral-angle restraints for polypeptide-structure determination in presence of conformational equilibria, Schmidt, **124**, 310
- ${}^{1}J_{CH}$ splittings, dipolar contributions to, measurement from magnetic-field dependence of *J* modulation in 2D NMR spectra, Tjandra and Bax, **124**, 512
- ³J_{HC} coupling constants, determination in antamanide by 2D NMR multiplet simulation for analysis of conformational equilibria, Schmidt, **124**, 298
- long-range heteronuclear, measuring, sensitivity- and gradient-enhanced heteronuclear coupled/decoupled HSQC-TOCSY experiments for, Kövér, Hruby, and Uhrín, 129, 125

measurement of degree of coupled isotopic enrichment of different positions in antibiotic peptide, Miller, Egan, and Townsend, **125**, 120

- pure-phase homo- and heteronuclear *J*-spectra with tilted cross peaks for determination of coupling constants. Koźmiński *et al.*, **125**, 193
- small *J*(¹H,¹³C) coupling constants in linear spin systems, determination of signs of, DQ/ZQ NMR experiment for, Otting, **124**, 503
- spinning sidebands in slow-MAS NMR spectra arising from tightly *J*coupled spin pairs, Wu *et al.*, **124**, 366
- weak "J(¹H-¹¹⁹Sn), optimal detection by gradient-enhanced 1D and 2D HMQC, application to tin derivative of erythromycin A, Martins *et al.*, **124**, 218
- Spin-state-selective excitation

application for E.COSY-type measurement of $J_{\rm HH}$ coupling constants, Meissner, Duus, and Sørensen, **128**, 92

- Spin systems
 - ABX, in isotropic and liquid crystalline phases, general features of X part: ¹³C-{¹H} spectra of 2,2'-difluorobiphenyl, Edgar, Emsley, and Furby, **128**, 105
 - I and I{S}, biselective and independent rotations with arbitrary flip angles and phases for, novel pulse sequence element for, Briand and Sørensen, **125**, 202

linear, signs of small J(¹H,¹³C) coupling constants in, DQ/ZQ NMR experiment for determination, Otting, **124**, 503

- pairs of spin orders, estimating cross-relaxation rates among, robust method using simultaneous fits to build-up and decay curves, Najfeld *et al.*, **124**, 372
- Spiral magnetic resonance imaging
- fast, with trapezoidal gradients, Duyn and Yang, 128, 130

Spiral readout

interleaved, and self-refocused RF, pulse sequence for flow evaluation based on, Takahashi, Li, and Stødkilde-Jørgensen, **126**, 127

Splittings

- multiplet, in paramagnetic proteins, electron spin-nuclear spin crosscorrelation effects on, Ghose and Prestegard, **128**, 138
- quadrupolar, ²H double-quantum-filtered spectra with, discrimination between compartments in sciatic nerve by, Shinar, Seo, and Navon, 129, 98
- spin-spin, high-resolution proton spectra without, methods for obtaining: proton chemical-shift spectra, Simova, Sengstschmid, and Freeman, 124, 104

Sso7d protein

¹³C, ¹⁵N-labeled, relaxation mechanisms for backbone carbonyl carbons in, Allard and Härd, **126**, 48

STEAM (see Stimulated echo acquisition mode)

Stenosis

model, application of pulse sequence for flow evaluation based on selfrefocused RF and interleaved spiral readout, Takahashi, Li, and Stødkilde-Jørgensen, **126**, 127

Stimulated echo acquisition mode

progressive saturation experiment, T_1 measurement in, effect of long echo times, Knight-Scott and Li, **126**, 266

Stimulated-echo method (*see also* Pulsed-field-gradient stimulated echo) double-STE diffusion experiments, suppression of convection artifacts in, Jerschow and Müller, **125**, 372

Stochastic optimization

- compact MRI magnet design by, Crozier and Doddrell, 127, 233
- Stripe-COSY
- and superstripe-COSY pulse sequences, combined with selective deuteration strategy, improved measurement of ¹H-¹H coupling constants via, Yang *et al.*, **129**, 212

Structures

- NMR calculation, torsion-angle molecular dynamics as tool for, Stein, Rice, and Brünger, **124**, 154
- NMR and X-ray, proteins and nucleic acids, conformational database potential for refinement of, improvements and extensions, Kuszewski, Gronenborn, and Clore, **125**, 171
- Substitution effects
- gramicidin A analogs in micelles, Hinton et al., 124, 132
- Superstripe-COSY
- and stripe-COSY pulse sequences, combined with selective deuteration strategy, improved measurement of ¹H-¹H coupling constants via, Yang *et al.*, **129**, 212
- Susceptibility (see Magnetic susceptibility)

Symmetries

global, use in automated signal class recognition by Bayesian method, Schulte *et al.*, **129**, 165

Т

TANGO

and BIRD, RF gradient sequence to eliminate uncoupled magnetization, Sodickson and Cory, **125**, 340

Temperature

- NMR sample, control, thermoelectric cooling for, Gregory, Claridge, and Leonard, **124**, 228
- room temperature, and normal pressure, mechanically detected magnetic resonance at, Schaff and Veeman, **126**, 200

Temperature-programmed desorption

and ESR, studies of adsorption of di-*tert*-butyl nitroxide on Au(111) and NiO(111), evidence for long-range interactions, Katter *et al.*, **126**, 242

- Temperature sensor
- quartz crystal, for MAS NMR, Simon, 128, 194

Tensors

chemical shift (see Chemical-shift tensor)

- 1,3,7,10-Tetramethylbenzo[c]cinnoline
- internal rotation of mutually interacting methyl groups, ¹³C NMR study, Wimmer amd Müller, **129**, 1

1,2,4,5-Tetrazine

- nitrogen NMR shielding, hydrogen bonding and solvent polarity effects, Witanowski *et al.*, **124**, 127
- Thermal spin polarizations

large, pulsed ENDOR spectroscopy at, and determination of absolute sign of hyperfine interaction, Bennebroek and Schmidt, **128**, 199

Thermometer

quartz crystal, for MAS NMR, Simon, 128, 194

Thiostrepton

HOHAHA distortions of ROESY spectra, selection of spin-lock transmitter position for minimization, Chan *et al.*, **126**, 183

Three-dimensional finite-element analysis

- method for calculation of B_1 fields in three dimensions using, Collins *et al.*, **125**, 233
- 3D MAXY-HMQC (see Maximum-quantum correlation HMQC NMR spectroscopy)

Three-dimensional spectroscopy

HCCH-TOCSY, doubly sensitivity-enhanced, ¹³C-labeled proteins in

 $\rm H_2O$ using heteronuclear cross polarization and pulsed-field gradients, Wijmenga, Steensma, and van Mierlo, **124**, 459

- high-resolution magic-angle turning separated-local-field experiment, Hu et al., **126**, 120
- PFG DQ experiments recorded with only *z* gradients, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149

Time delay

- constant-time HQQC experiment for protein NMR spectroscopy, Shaw et al., **124**, 479
- Time domain
 - amplitude, chemical shift, apparent T^*_{2} , and phase, quantitation by wavelet-transform analysis, Serrai *et al.*, **124**, 20
 - automated analysis of data, use of continuous regularization in, Totz *et al.*, **124**, 400
 - 2D NMR observation of coupling across ice-water interface, Weglarz and Peemoeller, **124**, 484
- Time-reverse ODESSA (*see* One-dimensional exchange spectroscopy by sideband alternation, time-reverse)
- Tin
 - erythromycin A derivative Ery $(OSn(tBu)_2)_2O$, application of optimal detection of weak ${}^nJ({}^1H-{}^{119}Sn)$ couplings by gradient-enhanced 1D and 2D HMQC, Martins *et al.*, **124**, 218
- Tissues
 - human leg and head, proton decoupling at 4 Tesla, half-volume coil for, Adriany and Gruetter, **125**, 178
 - and phantoms, diffusion measurement using SLIM localization, Yang *et al.*, **129**, 161
 - plant, internal and external signals in NMR spectra, use of bulk magnetic susceptibility to resolve, Shachar-Hill *et al.*, **127**, 17

semisolid tissue phantoms, ¹⁷O-decoupled proton MR spectroscopy and imaging in, Stolpen, Reddy, and Leigh, **125**, 1

- Tissue signal
 - flow-driven arterial water stimulation with elimination of, Marro, **124**, 240
- TOCSY (see Total correlation spectroscopy)
- Torrey-Bloch equations
 - in NMR study of molecular diffusion, simple solutions, Kenkre, Fukushima, and Sheltraw, **128**, 62
- Torsion angle
 - determination in peptides, application of coupling amplification in 2D MAS NMR, Hong et al., **129**, 85
 - molecular dynamics, as tool for NMR structure calculation, Stein, Rice, and Brünger, **124**, 154
- Total correlation spectroscopy
 - HCCH–TOCSY, doubly sensitivity-enhanced 3D, ¹³C-labeled proteins in H₂O using heteronuclear cross polarization and pulsed-field gradients, Wijmenga, Steensma, and van Mierlo, **124**, 459
 - and HSQC, sensitivity- and gradient-enhanced heteronuclear coupled/ decoupled experiments for measuring long-range heteronuclear coupling constants, Kövér, Hruby, and Uhrín, **129**, 125
 - 1D gradient-enhanced, and 1D ge-NOESY, proton chemical-shift correlation with full sensitivity using, Uhrín and Barlow, **126**, 248
 - and ROESY and NOESY, pure absorption 2D spectra, quick recording using pulsed field gradients, Parella, Sánchez-Ferrando, and Virgili, 125, 145
- Total through-space-correlation spectroscopy

application of broadband polarization transfer under MAS, Baldus and Meier, **128**, 172

Transferrin

ovotransferrin, soft-pulsed ²⁷Al quadrupolar central transition NMR studies, Aramini, Germann, and Vogel, **129**, 111

Translation cycles

programmed sample, fresh spins for NMR signal enhancement using, Wu and Johnson, **127**, 225 254

Transmitter

spin-lock, selection of position for minimization of HOHAHA distortions of ROESY spectra, Chan *et al.*, **126**, 183

Triple resonance

- four-dimensional correlation of sequential amide protons and nitrogens-15 in deutrated proteins, HN(CA)NH pulse scheme for, Ikegami et al., 124, 214
- Triple-resonance experiments
 - out-and-back, resolution enhancement applied to HCACO sequence, Baur and Kessler, **126**, 270

Tropolone

- solid, dynamic hydrogen disorder: single-crystal NMR study of hydroxyl deuterons, Detken *et al.*, **126**, 95
- time-reverse ODESSA experiment, Reichert et al., 125, 245
- Tryptophan
 - alanine and glycine substitution for, effects on heterogeneity of gramicidin A analogs in micelles, Hinton *et al.*, **124**, 132
 - in gramicidin analogs in SDS micelles, relative motion of indole ring, proton T_1 , T_2 , and NOE study, Hinton and Washburn-McCain, **125**, 259
- Tumor cells
 - breast, MCF7, dynamic contrast-enhanced imaging and analysis at high spatial resolution, Furman-Haran, Grobgeld, and Degani, **128**, 161
- glioma, multiple-¹³C-labeled cell extracts, ultra-high-resolved HSQC spectra, Willker, Flögel, and Leibfritz, **125**, 216

TurboFLASH

centric phase-encoded sequence, diffusion measurements with, comparison of imaging strategies for, Coremans *et al.*, **124**, 323

Two-dimensional J spectroscopy

based methods for obtaining proton chemical-shift spectra, Simova, Sengstschmid, and Freeman, **124**, 104

Two-dimensional spectroscopy

- absorption lineshapes in, and effects of slow motions in complex fluids, Saxena and Freed, **124**, 439
- automated signal class recognition by Bayesian method, use of global symmetries in, Schulte *et al.*, **129**, 165
- dipolar spectra with sample flipping, determination of orientational anisotropy in glassy solids by, Utz et al., **128**, 217
- gradient-based multiplicity-edited HSQC experiments, improved sensitivity, Parella, Sánchez-Ferrando, and Virgili, **126**, 274
- $H(C)CO_2$ and $H\underline{CCO}_2$, for assignment and pH titration of carboxylate groups in uniformly ${}^{15}N/{}^{13}C$ -labeled proteins, Pellecchia *et al.*, **124**, 274
- ¹H chemical-shift imaging of human muscle metabolites, Hu, Willcott, and Moore, **126**, 187
- heteronuclear, measurement of ¹H $T_{1\rho}$ in uniformly ¹⁵N-labeled protein with, Almeida and Opella, **124**, 509
- HSQC, application of use of RF gradients in excitation sculpting, Heikkinen, Rahkamaa, and Kilpeläinen, **127**, 80
- magnetic-field dependence of *J* modulation, measurement of dipolar contributions to ${}^{1}J_{CH}$ splittings from, Tjandra and Bax, **124**, 512
- MAS, coupling amplification in, and application to torsion angle determination in peptides, Hong *et al.*, **129**, 85
- MAS separated-local-field spectroscopy, assignment of ¹³C NMR spectra of rigid solids by, Pan, **124**, 1
- multifrequency Fourier transform ESR: X/Ku-band spectrometer, Borbat, Crepeau, and Freed, **127**, 155

multiple-quantum MAS, quadrupolar nuclei

- acquisition of whole echo, Brown and Wimperis, **124**, 279 comparison of methods, Brown and Wimperis, **128**, 42
- multiplet simulation, determination of ${}^{3}J_{\rm HC}$ coupling constants in antamanide by, for analysis of conformational equilibria, Schmidt, **124**, 298
- NOE-enhanced J-resolved difference spectroscopy for observation of

NOE from regions of spectral overlap, Grode and Mowery, 126, 142

1D and 2D MAS NMR spectra of dipolar-coupled homonuclear spin- $\frac{1}{2}$ pair, Kundla *et al.*, **129**, 53

peptides on beads, Jelinek et al., 125, 185

- PFG DQ experiments recorded with only *z* gradients, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149
- pure absorption TOCSY, ROESY, and NOESY spectra, quick recording using pulsed field gradients, Parella, Sánchez-Ferrando, and Virgili, 125, 145

rotating-frame NQR imaging, Robert and Pusiol, 127, 109

- spectra with partial overlap, measurement of relaxation rates from, Mishra *et al.*, **125**, 358
- time-domain, observation of coupling across ice-water interface, Weglarz and Peemoeller, **124**, 484

U

Ubiquitin

¹⁵N 2D spectra with partial overlap, measurement of relaxation rates from, Mishra *et al.*, **125**, 358

V

Valclavam

degree of coupled isotopic enrichment of different positions in, NMR measurement, Miller, Egan, and Townsend, **125**, 120

Variable angle sample spinning

- and isotope dilution and deuterium decoupling, in measurement of interproton nuclear spin dipolar couplings in liquid crystalline samples, Ciampi, De Luca, and Emsley, **129**, 207
- Vectors
 - internuclear, in DNA duplex with G-A mismatch in solution, rotational correlation times: complete-relaxation-matrix analysis of O-ROESY spectra, Kuwata *et al.*, **128**, 70

Velocimetry

MRI, based strategies for NMR rheometry, Gibbs et al., 125, 43

Vesicles

intermediate-size, high-resolution spectra using MAS NMR, Traikia *et al.*, **125**, 140

Volume

intracellular, in isolated rat heart, continuous monitoring during normothermic perfusion and ischemia, Askenasy and Navon, **124**, 42

W

- Water
 - and fat, protons, relative concentrations and relaxation times, single-scan imaging technique for measurement of, Ma et al., **125**, 92
 - flip back, ROESY sequence for high-field NMR of biomolecules, Fulton and Ni, **129**, 93
 - flow-driven arterial water stimulation with elimination of tissue signal, Marro, **124**, 240
 - -ice interface, coupling across, observation by 2D time domain NMR, Weglarz and Peemoeller, **124**, 484
 - inversion-recovery experiments, intensity jumping and beating due to radiation damping, Chen, Mao, and Ye, **124**, 490
 - residual signal in PFG DQ experiments recorded with only *z* gradients, reduction, Dalvit and Böhlen, **126**, 149

Water-PRESS

optimization, and integration into pulse sequences for study of biological macromolecules, Price, Hayamizu, and Arata, **126**, 256

Waveforms

generalized gradient, spin echo analysis of restricted diffusion under, matrix formalism for, Callaghan, **129**, 74 Wavelet-transform analysis

time-domain quantitation of amplitude, chemical shift, apparent T^*_2 , and phase by, Serrai *et al.*, **124**, 20

Wave velocity

rapid MR measurement, in vitro validation, Kraft et al., 126, 103

Weak-diffusion theory

- NMR signal in magnetically heterogeneous media, Jensen and Chandra, **126**, 193
- Weak-field magnetic resonance imaging
- low-frequency magnetic interference in, shielding by single-layer cylindrical coil, Planinšič, **126**, 30

Weight ratios

wet/dry, and T_1 and T_2 distributions, ¹H NMR measurements in lung, Estilaei *et al.*, **124**, 410

Х

X band

pulse-ENDOR study of ⁵⁷Fe-substituted sodalite: effect of zero-field splitting, Vardi et al., **126**, 229

¹²⁹Xe

laser-hyperpolarized nuclei, T_1 and diffusion measurements using MR signals from, Patyal *et al.*, **126**, 58

laser-polarized, NMR in blood foam, Tseng *et al.*, **126**, 79 as relaxation agent, Hitchens and Bryant, **124**, 227

X-ray structures

proteins and nucleic acids, conformational database potential for refinement of, improvements and extensions, Kuszewski, Gronenborn, and Clore, **125**, 171

Ζ

Zero-field splitting

in X-band pulsed ENDOR study of ⁵⁷Fe-substituted sodalite, Vardi et al., **126**, 229

z gradients

PFG DQ experiments recorded with, reduction of residual H₂O signal, Dalvit and Böhlen, **126**, 149

Zinc acetate

¹³C-labeled, 1D and 2D MAS NMR spectra of dipolar-coupled homonuclear spin- $\frac{1}{2}$ pair, Kundla *et al.*, **129**, 53

Zircon

X-irradiated, unusual center at 10 K, X-band EPR study, Claridge, Sutton, and Tennant, **125**, 107